Math, asked by MeenakshiSahu, 10 months ago

A toy has two parts. One part is cone shaped and has radius of 5 cm. and it is placed on the top of a hemisphere having similar radius. Total height of toy is 17 cm. Find the total surface area of the toy? ​

Answers

Answered by Anonymous
16

Given :

  • Radius of cone shaped portion is 5 cm.
  • The conical portion is placed over a hemisphere having radius similar as the cone.
  • Total height of the toy is 17 cm.

To Find :

  • Total Surface Area of the toy.

Solution :

The radius of the hemisphere is 5 cm.

Total Height of the toy = 17 cm.

Height of the cone will be difference between total height of the toy and radius of the cone.

\sf{Height_{cone}\:=\:Total\:Height_{toy}\:-\:Radius_{cone}}

\longrightarrow \sf{Height_{cone}\:=\:17\:-5}

\longrightarrow \sf{Height_{cone}\:=\:12\:cm}

Radius of cone = 5 cm.

Since, we have to find the curved surface area, we require the slant height of the cone.

Formula :

\large{\boxed{\bold{l^2\:=\:r^2\:+\:h^2}}}

Where,

  • l = slant height
  • r = radius
  • h = perpendicular height

Block in the available data,

\longrightarrow \sf{l^2=5^2+12^2}

\longrightarrow \sf{l^2=25+144}

\longrightarrow \sf{l^2=169}

\longrightarrow \sf{l=\sqrt{169}}

\longrightarrow \sf{l=13\:cm}

•°• Slant height of the cone = 13 cm

Now using the formula of CSA of cone.

Formula :

\large{\boxed{\bold{CSA\:=\:\pi\:r\:l}}}

Block in the available data,

\longrightarrow \sf{CSA\:=\:\pi\:\times\:5\:\times\:13}

\longrightarrow \sf{CSA\:=\:\pi\:65}

\longrightarrow \sf{CSA\:=\:65\:\pi\:\:\:(1)}

Now, calculating the curved surface area of the hemisphere.

Radius = 5 cm

Formula :

\large{\boxed{\bold{CSA\:=\:2\:\pi\:r^2}}}

Block in the available data,

\longrightarrow \sf{CSA\:=\:2\:\pi\:\times\:5^2}

\longrightarrow \sf{CSA\:=\:2\:\pi\:\times\:25}

\longrightarrow \sf{CSA\:=\:50\:\pi\:\:\:(2)}

Now, the total surface area of the toy will be sum of equation 1 and 2.

\sf{TSA_{toy}\:=\:CSA_{cone}\:+\:CSA_{hemisphere}}

\longrightarrow \sf{TSA_{toy}\:=\:65\:\pi\:+\:50\:\pi}

\longrightarrow \sf{TSA_{toy}\:=\:\pi\:(65\:+\:50)}

\longrightarrow \sf{TSA_{toy}\:=\:\pi\:(115)}

\longrightarrow \sf{TSA_{toy}\:=\:\dfrac{22}{7}\:\times\:115}

\longrightarrow \sf{TSA_{toy}\:=\:22\:\times\:16.42}

\longrightarrow \sf{TSA_{toy}\:=\:361.24}

\large{\boxed{\bold{\purple{Total\:Surface\:Area\:of\:Toy\:=\:361.24\:cm^2}}}}

Answered by Mishtiii
35

AnswEr:

\boxed{\setlength{\unitlength}{.8mm}\begin{picture}(55,25)\thicklines\put(35,18){\vector(2,-1){20}}\put(20,18){\vector(-2,-1){20}}\put(17,21){\sf\large\underline{\bigstar$\:Toy}}\put(0,1){\sf{Hemisphere}}\put(25,1){+}\put(43,1){\sf{Cone}}\end{picture}}

\bf{Toy}\begin{cases}\textsf{Radius = 5cm}\\\textsf{Height = 17cm}\end{cases}

\bf{Cone}\begin{cases}\textsf{Radius = 5cm}\end{cases}

\bf{Hemisphere}\begin{cases}\textsf{Radius = 5cm}\\\textsf{Height = 17 - 5 = 12cm}\end{cases}

 \rule{170}1

\underline{\bigstar\:\sf{Total \: surface \: area \: of \: toy:}}

\normalsize\ : \implies\sf\ T.S.A_{toy} = C.S.A_{cone} + C.S.A_{Hemisphere} \\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi rl + 2 \pi r^{2} \\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi r \sqrt{r^2 + h^2} + 2 \pi r^{2} \\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi \left(r \sqrt{r^2 + h^2} + 2 \times\ r^{2} \right) \\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi \left( r\sqrt{(5)^2 + (12)^2} + 2 \times\ 5 \times\ 5 \right)\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi \left(5 \sqrt{25 + 144} + 2 \times\ 25 \right)\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \pi \left( 5 \times\ 13 + 50 \right)\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \frac{22}{7} \left( 65 + 50 \right)\\\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \frac{22}{7} \left( 115 \right)\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \frac{22 \times\ 115}{7}\\\\\\\normalsize\ : \implies\sf\ T.S.A_{toy} = \frac{\cancel{2530}}{\cancel{7}} = 361.42\\\\\\\normalsize\ : \implies{\underline{\boxed{\bf \green{T.S.A_{toy} = 361.42 \: cm^{2} }}}}

Similar questions