Math, asked by adarshkumar36, 1 year ago

A toy is in the shape of a cone mounted on a hemisphere of same base and radius. If the volume of the toy is 232cm3 and its diameter is 7cm ,find the height of the toy​

Answers

Answered by Govindjk123
7

Answer:

14.5

Step-by-step explanation:

A toy is in the shape of a cone mounted on a hemisphere of same base radius.

Volume of Toy = 231 cm3

Base Diameter of toy = 7 cm

Base radius of toy = 7/2 cm = 3.5 cm

Volume of hemisphere = 2/3 πr3

= 2/3 × 22/7 × 3.53 cm3

= 89.83 cm3

Volume of cone = Volume of hemisphere – Volume of toy

= 231 – 89.83 cm3 = 141.17 cm3

Volume of cone is given by 1/3 πr2h

Where h is the height of cone

∴ 1/3 × πr2h = 141.17 cm3

⇒ 1/3 × 22/7 × 3.5 × 3.5 × h = 141.17 cm3

⇒ h = 141.17 × 3 × 7/22 × 1/3.5 × 1/3.5

⇒ h = 11 cm

Height of cone = 11 cm

Height of toy = Height of cone + Height of hemisphere

= 11 cm + 3.5 cm = 14.5 cm

[Height of hemisphere = Radius of hemisphere]

∴ Height of toy is 14.5 cm.

Similar questions