Physics, asked by Ramkr7376, 9 months ago

A train is travelling at the speed of 90km/h brahm are applied so as to produce a Uniform acceleration of -0.5m/s2 . Find How far the train will go before it is brought to rest.

Answers

Answered by BrainlyConqueror0901
31

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:travelled=625\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Initial \: speed(u) = 90 \: km/h \\  \\ \tt:  \implies Acceleration(a) =  - 0.5 \:  {m/s}^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Distance \: travel(s) = ?

• According to given question :

 \tt \circ \: Initial \: speed = 90 \times  \frac{5}{18}   = 25 \: m/s \\  \\  \tt \circ \: Final \: speed = 0 \: m/s\\  \\  \bold{As \:  we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\ \tt:  \implies  {0}^{2}  =  {25}^{2}  + 2 \times  - 0.5 \times s \\  \\ \tt:  \implies 0 = 625 - s \\  \\ \tt:  \implies  - 625 =  - s \\  \\  \green{\tt:  \implies s = 625 \: m} \\  \\   \green{\tt \therefore Distance \: travelled \: by \: train \: is \: 625 \: m \: after \: applying \: brake}

\blue{\huge {\boxed{ \tt Some \: related \: formula}}} \\   \\  \orange{ \tt \circ \: First \: eqn \: of \: motion \to \: v = u + at} \\  \\ \orange{ \tt \circ \: Second\: eqn \: of \: motion \to \: s= u t+  \frac{1}{2} {at}^{2}  }  \\  \\  \orange{ \tt \circ \: Time \: of \: flight  \to \: t=  \frac{ 2u \:   {sin}  \: \theta }{g} }  \\  \\ \orange{ \tt \circ \: Range \to \: R = \frac{ {u}^{2} sin  \: 2 \theta}{g} } \\  \\ \orange{ \tt \circ \: Maximum \: height \to \:  H_{max}=  \frac{ {u}^{2}  {sin}^{2}   \: \theta}{2g} }

Answered by Anonymous
20

Answer :

625 m

explanation :

plz refer to the attachment above

Attachments:
Similar questions