Math, asked by rknair7891, 1 year ago

A two digit no. Is such that the product of its digits is 18. When 63 is subtracted from the number ,the digits interchanve their places . Find the no.

Answers

Answered by mayankagarhari
0

Answer:

Step-by-step explanation:

Let the digits be X and Y

Now

X.Y=18.......( i )

10X+Y-63=10Y+X

9X-63=9Y

9X-9Y=63

X-Y=7.......( ii )

From ( i ), Y=18/x

So,

X-18/X=7

X^2-18=7X

X^2-7X-18=0

X^2-(9-2)X-18=0

X^2-9X+2X-18=0

X(X-9) + 2(X-9)=0

X+2=0 , X-9=0

So,

X=9

Y=2

Required number is 92

Answered by Anonymous
3

  \rm \: let \: the \: tens \: and \: unit \: digit \: of \: the \: required \: number \: be \: x \: and \: y \: respectively \: then \\  \rm \: xy = 18 \implies \: y =  \frac{18}{x}   \\   \rm \: \purple {\: and \: (10x + y) - 63 = 10y + x }\\   \rm\implies \: 9x - 9y = 63 \implies \: x - y = 7 \:  \:  \:  \: .....(1) \\  \rm \orange{ \: putting \: y =  \frac{18}{x }  \: into \: (1) }\\  \rm \: x -  \frac{18}{x}  = 7 \\  \rm \: x {}^{2}   - 18 - 7x \implies \: x {}^{2}  - 7x - 18 \\  \rm  \implies \: x {}^{2}  - 9x + 2x - 18 = 0 \implies \: x(x - 9) + 2(x - 9) = 0 \\  \rm \implies(x - 9)(x + 2) = 0 \\  \rm \: x = 9 \: or \: x =  - 2 \:  \:  \:  \: ( but \: a \: digit \: cannot \: be \: negative) \\ \rm   \red {\:  \boxed{\therefore \: x = 9}} \\  \rm \: putting \: x = 9 \: in \: (1) we \: get \: y = 2 \\  \rm \: thus \: the \: tens \: digit \: is \: 9 \: and \: the \: unit \: digit \: is \: 2  \\  \rm hence \: the \: required \:  number \: is \: 92

Similar questions