Math, asked by sanda7ldpsj, 1 year ago

A two digit number is such that product of its digits is 18. Where 63 is subtracted from the number, the digits interchange their places. Find the number.

Answers

Answered by mysticd
5
go through the solution step by step by
Attachments:
Answered by Anonymous
2

{\green {\boxed {\mathtt {☆Solution}}}}

  \rm \: let \: the \: tens \: and \: unit \: digit \: of \: the \: required \: number \: be \: x \: and \: y \: respectively \: then \\  \rm \: xy = 18 \implies \: y =  \frac{18}{x}   \\   \rm \: \purple {\: and \: (10x + y) - 63 = 10y + x }\\   \rm\implies \: 9x - 9y = 63 \implies \: x - y = 7 \:  \:  \:  \: .....(1) \\  \rm \orange{ \: putting \: y =  \frac{18}{x }  \: into \: (1) }\\  \rm \: x -  \frac{18}{x}  = 7 \\  \rm \: x {}^{2}   - 18 - 7x \implies \: x {}^{2}  - 7x - 18 \\  \rm  \implies \: x {}^{2}  - 9x + 2x - 18 = 0 \implies \: x(x - 9) + 2(x - 9) = 0 \\  \rm \implies(x - 9)(x + 2) = 0 \\  \rm \: x = 9 \: or \: x =  - 2 \:  \:  \:  \: ( but \: a \: digit \: cannot \: be \: negative) \\ \rm   \red {\:  \boxed{\therefore \: x = 9}} \\  \rm \: putting \: x = 9 \: in \: (1) we \: get \: y = 2 \\  \rm \: thus \: the \: tens \: digit \: is \: 9 \: and \: the \: unit \: digit \: is \: 2  \\  \rm hence \: the \: required \:  number \: is \: 92

Similar questions