a two - digit number is such that the product of the digits is 35. when 18 is added to this number, the digits interchange their places. Determine the number
Answers
Given :-
- Product of the digits = 35.
- On adding 18 to the number, the digits interchange their places.
To Find :-
- The two — digit number.
Solution :-
Let :-
- Units digit of the number = y
- Ten's digit of the number = x
Then, the number = 10x + y
Now, when the digits are reversed, the number = 10y + x
According to the question,
x × y = 35 ⇒ x = 35/y → (1)
Also, 10x + y + 18 = 10y + x
⇒ 9x - 9y = 18
⇒ x - y = 2
Substituting value of x from (1), we get,
⇒ 35/y - y = -2
⇒ 35 - y² = -2y
⇒ y² - 2y - 35 = 0
Splitting the middle term, we get,
⇒ y² - 7y + 5y - 35 = 0
⇒ y(y - 7) + 5(y - 7) = 0
⇒ (y - 7)(y + 5) = 0
⇒ y = 7, -5
Neglecting negative value, we get,
⇒ y = 7
∴ y = 7
Substituting value of y in (1), we get,
⇒ x = 35/y = 35/7 = 5
∴ The two digit number is 57.
☆ Given:
⇏ A two - digit number is such that the product of the digits is 35. when 18 is added to this number, the digits interchange their places.
☆ Find:
⇏ Find the two - digit number.
☆ According to the question:
⇏ Let us assume 'x' and 'y' as the units digit number and ten's digit number. Let the number be (10y + x).
☆ Calculations:
⇏
⇏
⇏
⇏
⇒
⇒
☆ Adding values to the equation, we get:
⇒
⇒
⇒
⇏
☆ Separating the middle term from the equation:
⇒
⇒
⇒
⇒
Lets take the positive number as the value of x.
☆ Adding values to the equation, we find the number:
⇒
⇏
⇏
Two-digit number:
⇏
⇏
Therefore, the two-digit number =