Math, asked by yashi8746, 10 months ago

A vessel is a hollow cylinder fitted with a hemispherical bottom of the same base. The depth of the cylinder is 14/3 m and the diameter of hemisphere is 3.5 m. Calculate the volume and the internal surface area of the solid.

Answers

Answered by Anonymous
2

Answer:

179.66m²

Step-by-step explanation:

Volume of vessel =

\pi {r}^{2} h \:  +  \frac{2}{3}\pi {r}^{3}  \\  \\  =  \geqslant \pi {r}^{2} (h +  \frac{2}{3} r) \\  \\  =  \geqslant  \frac{22}{7}   \times 3.5 \times 3.5( \frac{14}{3}  +  \frac{2}{3}  \times 3.5) \\  \\  =  \geqslant 22 \times 0.5 \times 3.5( \frac{14}{3}  +  \frac{7}{3} ) \\  \\  =  \geqslant 11 \times 3.5( \frac{21}{3} ) \\  \\  =  \geqslant 38.5 \times 7 \\  \\  =  \geqslant 269.5 {m}^{3}  \\  \\ surface \: area \:  = 2\pi \: rh + 2\pi {r}^{2}  \\  \\  =  \geqslant 2\pi \: r(h + r) \\  \\  =  \geqslant  2\times  \frac{22}{7}  \times 3.5( \frac{14}{3}  + 3.5) \\  \\  =  \geqslant 44 \times 0.5( \frac{24.5}{3} ) \\  \\  =  \geqslant 22 \times  \frac{24.5}{3}  \\  \\  =  \geqslant  \frac{539}{3}  \\  \\  =  \geqslant 179.66 {m}^{2}

Answered by AbdJr10
0

Answer:

your answer is approx 179.66

Step-by-step explanation:

hope the answer will help you

Similar questions