a/x-b+b/x-b=2 solve using quadratic formula
Answers
Answered by
0
Answer:
Step-by-step explanation:
The given equation is
\frac{a}{x-b} +\frac{b}{x-a} =2 .
Multiply both sides of the equation by (x-a)(x-b) .
(x-a)(x-b)(\frac{a}{x-b} +\frac{b}{x-a}) =2(x-a)(x-b)\\ a(x-a)+b(x-a) =2(x-a)(x-b)\\ a(x-a)+b(x-a) =2(x^2-(a+b)x+ab)\\ 2x^2-3(a+b)x+a^2+b^2+2ab=0\\ 2x^2-3(a+b)x+(a+b)^2=0\\ (2x-a-b)(x-a-b)=0\\ x=\frac{a+b}{2},a+b
Thus the solutions are x=\frac{a+b}{2},a+b .
Similar questions