Math, asked by manutrivedi03, 1 year ago

∆ABC ~ ∆PQR for the correspondence ABC<-->PQR. 2m<P = 3m<Q and. m<C = 100. Find the m<b.

Note:- This sign before Alphabet means the angle (<).

1 one plz very imp ​

Attachments:

Answers

Answered by Mankuthemonkey01
91
Answer:

32°

Step-by-step explanation:

Given

\triangle ABC \sim \triangle PQR \: with \: correspondence \: to \\ABC \leftrightarrow PQR\\\\2\measuredangle P = 3\measuredangle Q \sf and, \: \measuredangle C = 100

Since,

\angle C \leftrightarrow \angle R,\\\\\measuredangle R = 100^\circ

Now,

2 \measuredangle P = 3 \measuredangle Q\\\\\implies \measuredangle P = \measuredangle \frac{3}{2} Q\\

Now, by angle sum property,

\angle P + \angle Q + \angle R = 180^\circ\\\\\implies \measuredangle \frac{3}{2} Q + \measuredangle Q + 100^\circ = 180^\circ\\\\(\rm since, \measuredangle P = \measuredangle \frac{3}{2} Q)\\\\ \implies\measuredangle \frac{3}{2} Q + \measuredangle \frac{2}{2}Q = 180^\circ - 100^\circ \\\\\implies \measuredangle \frac{5}{2} Q = 80^\circ\\\\\implies \measuredangle Q = 80 \times \frac{2}{5}\\\\\implies \measuredangle Q = 32^\circ

Now, since

\triangle ABC \sim \triangle PQR \\\textrm{with a correspondence of}\\\\ABC \leftrightarrow PQR\\\\\implies \measuredangle Q = \measuredangle B

Hence, \angle B = 32^\circ\\

ChandrakalaR: the construction of a triangle ABC AB = 4 cm angle A = 60° not possible when BC = AC = 4.5 CM give a reason
Mankuthemonkey01: @manutrivedi ^^" Yeah but this answer is not wrong either ^^""
manutrivedi03: yeah
ChandrakalaR: my question is the construction of a triangle ABC AB = 4 cm angle A = 60 degree is not possible when BC = AC = 4.5 CM give a reason
manutrivedi03: my sir has once told 'do as directed' otherwise in hard exams like for ' IPS ' they will cut half mark
Mankuthemonkey01: :O ok ✓
manutrivedi03: ok be happy have a nice day
Mankuthemonkey01: :) same 2 u
manutrivedi03: lets solve a question of the man asking us
manutrivedi03: thanks
Answered by deepak903124
64

this is what you want it's this

Attachments:

jaffer52: lose
Similar questions