ABCD is a cyclic quadrilateral angle D=61 and a diagonal pass through A and C and angle BAC =angle BCA find angle BAC
Answers
Given :- angle BAC = 50° and angle DBC = 60°
To find :- angle BCD.
Solution :-
angle BAC = angle CDB [Angles on the same segment of a circle are equal]
angle CDB = 50°
In triangle BCD,
angle BCD + angle CDB + angle DBC = 180° [Angle sum property of a triangle]
angle BCD + 50° + 60° = 180°
angle BCD + 110° = 180°
angle BCD = 180° - 110°
angle BCD = 70° ANSWER
Given :- angle BAC = 50° and angle DBC = 60°
To find :- angle BCD.
Solution :-
angle BAC = angle CDB [Angles on the same segment of a circle are equal]
angle CDB = 50°
In triangle BCD,
angle BCD + angle CDB + angle DBC = 180° [Angle sum property of a triangle]
angle BCD + 50° + 60° = 180°
angle BCD + 110° = 180°
angle BCD = 180° - 110°
angle BCD = 70° ANSWER
HOPE SO IT WILL HELP......
PLEASE MARK IT AS BRAINLIST.....