Math, asked by Visvartgsou, 1 year ago

ABCD is a parallelogram. A circle through A, B and C intersects CD produced at E. Prove that AE=AD

Answers

Answered by mandalankita27
7
the above picture is the prove
Attachments:
Answered by SarcasticL0ve
16

AnswEr:

⠀⠀⠀

\setlength{\unitlength}{1.2 mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(8,40){\line(5,0){35}}\put(38,9){\sf{B}}\put(12,15){\line(5,0){26}}\put(8,40){\line(5,0){35}}\put(12,15){\line(1,5){5}}\put(12,15){\line( - 1,5){5}}\put(38,15){\line(1,5){5}}\put(9,10){\sf{A}}\put(44,42){\sf{C}}\put(18,43){\sf{D}}\put(3,42){\sf{E}}\end{picture}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀☯ In order to prove that AE = AD i.e. ∆ AED is an Isosceles triangle it is sufficient to prove that \bf \angle AED = \angle ADE. Since ABCD is a cyclic quadrilateral.

⠀⠀⠀

\therefore\;\sf \angle AED + \angle ABC = 180^\circ\qquad\qquad\bigg\lgroup\bf eq\;(1)\bigg\rgroup\\ \\

☯ Now, CDE is a straight line

⠀⠀⠀

\therefore\;\sf \angle ADE + \angle ADC = 180^\circ\\ \\

☯ But, \bf \angle ADC\;and\; \angle ABC are opposite angles of a parallelogram.

⠀⠀⠀

\therefore\;\sf \angle ADC = \angle ABC\\ \\

:\implies\sf \angle ABC + \angle ADE = \angle ADC + \angle ADE\\ \\

:\implies\sf \angle ABC + \angle ADE = 180^\circ\qquad\qquad\bigg\lgroup\bf eq\;(2)\bigg\rgroup\\ \\

☯ Now, From equations (i) and (ii), we get

⠀⠀⠀

:\implies\sf \angle AED + \angle ABC = \angle ABC + \angle ADE\\ \\

:\implies\sf \angle AED = \angle ADE\\ \\

☯ Thus, In ∆ AED, we have

⠀⠀⠀⠀

:\implies\sf \angle AED = \angle ADE\\ \\

:\implies\sf \purple{AD = AE}\\ \\

Similar questions