Math, asked by StarTbia, 1 year ago

ABCD is a rectangle with AB = 14 cm. and BC = 7 cm.
Taking DC, BC and AD as diameters, three semicircles are drawn as shown in the figure. Find the area of the shaded region.

Attachments:

Answers

Answered by residentking2400
11
bricks shaded or white shaded...?
the area of white region is 77 sq. cm
and
the area of brick region is 126 sq. cm
Answered by Anonymous
74

Heya !!

Here is your answer..

Given,

AB = 14 cm , BC = 7 cm

Now,

area \: of \: 2 \: semi \: circle \: = \pi \: {r}^{2}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{22}{7} \: \times {3.5}^{2}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: 38.5 \: {cm}^{2}

And,

area \: of \: \: bigger \: semi \: circle \: = \frac{1}{2} \times \pi \: {r}^{2}

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{1}{2} \times \frac{22}{7} \times {7}^{2}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 77 {cm}^{2}

Also,

area \: of \: rectangle = \: l \times b

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 14 \times 7

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: 98 \: {cm}^{2}

Now, \: area \: of \: shaded \: region = area \: of \: 2 \: semi \: circle \: + (area \: of \: rectangle \: - \: area \: of \: bigger \: semi \: circle)

 = \: 38.5 + (98 - 77)

 = 59.5 \: {cm}^{2}

Hope it helps.


Noah11: great answer mam!
pR44: Nice
Similar questions