Math, asked by Tanisha9478, 10 months ago

Abhishek is 6 years older than jagdeesh.six years ago abhishek was twice as old as jagdeesh.write the situain in algebraic expression and find how old is each now ?

Answers

Answered by mddilshad11ab
84

\huge{\underline{\purple{\rm{Solution:}}}}

\large{\underline{\red{\rm{let:}}}}

  • \sf{The\:age\:of\:Abhishek=x}
  • \sf{The\:age\:of\:Jagdeesh=y}

\small{\underline{\green{\rm{Given:}}}}

  • \sf{Abhishek\:is\:6\: years\: older\:than\:jugdeesh}
  • \sf{6\: years\:ago\:Abhishek\:was\: twice\:of\: jugdeesh}

\small{\underline{\orange{\rm{To\: Find:}}}}

  • \sf{The\:age\:of\:Abhishek\:and\: Jugdeesh}

\small{\underline{\green{\rm{According\: to\:1st\:case:}}}}

\rm{\implies x=y+6}

\rm{\implies x-y=6}

\rm\pink{\implies x-y=6-----(i)}

\small{\underline{\green{\rm{According\: to\:2nd\:case:}}}}

\rm{\implies x-6=2(y-6)}

\rm{\implies x-6=2y-12}

\rm{\implies x-2y=-12+6}

\rm\pink{\implies x-2y=-6------(ii)}

  • \sf{in\:eq\:1st\: multiplying\:by\:2}

\rm{\implies 2x-2y=12}

\rm{\implies x-2y=-6}

  • \sf{By\: solving\:equation\:we\:get}

\rm\red{\implies x=18}

  • \rm{putting\: the\: value\: of\:x=18\:in\:eq\:1}

\rm{\implies x-y=6}

\rm{\implies 18-y=6}

\rm{\implies -y=6-18}

\rm\red{\implies y=12}

Hence,

\sf{\implies The\:age\:of\:Abhishek=x=18\: year's}

\sf{\implies The\:age\:of\: Jagdeesh=y=12\: year's}

Answered by Anonymous
3

______________________________

\huge\tt{GIVEN:}

  • Abhishek is 6 years older than jagdeesh
  • Six years ago, Abhishek was twice as old as jagdeesh

______________________________

\huge\tt{SOLUTION:}

At present time,

Let us assume that the age of Jagdeesh is x , Then the age of Abhishek would be (x+6)

Six years ago,

↪Jagdeesh = (x-6)

↪Jagdeesh = (x-6)↪ Abhishek = (x+6-6)

We can say that,

↪(x-6) / (x+6-6) = 2x / x

↪x(x-6) = 2x(x+6-6)

↪2x - 6x = 3x + 12x - 12x

↪4x = 3x

↪x = 4 × 3

↪x = 12 years

↪x + 6 = 18 years

______________________________

Age of Jagdeesh = 12 years

Age of Abhishek = 18 years

______________________________

Similar questions