Math, asked by satyendrajsr02, 10 months ago

achha box measures 7 cm in length 5 cm and 3 cm in height how many chock boxes can be placed in the card board boxes Length breadth and height are respectively 49 CM 25 cm and 15 CM step by step​

Answers

Answered by alokjoshi2004
0

Step-by-step explanation:

volume of cylindrical card board board. = number

volume of cylindical box of boxes

Answered by Anonymous
2

❏ QUESTION:-

A box with measures 7 cm in length 5 cm in breadth and 3 cm in height. Now, how many chock boxes can be placed in the card board box of Length, breadth and height 49 cm, 25 cm and 15 cm respectively ?

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

❏ Solution:-

For The CHOCK BOX

\setlength{\unitlength}{0.5 cm}\begin{picture}(12,4)\thicklines\put(1,4){$.$}\put(5.5,5.5){$A$}\put(11.1,5.8){$B$}\put(11.08,8.9){$C$}\put(5.35,8.5){$D$}\put(3.45,10.15){$E$}\put(3.4,7.15){$F$}\put(9.14,10.235){$H$}\put(9.14,7.3){$G$}\put(3.3,6.3){$5\:cm$}\put(7.75,6.2){$7\:cm$}\put(11.1,7.5){$3\:cm$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

Given:-

• length (l) = 7 cm.

•breadth (b) = 5 cm.

•height (h) = 3 cm.

\therefore Volume of the each chock box is,

\sf\longrightarrow V_{\red{chock\:box}}=(7\times5\times3)\:cm^3

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

✦ For The Card Board BOX ✦

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(5.6,5.6){$A$}\put(11.1,5.8){$B$}\put(11.08,8.9){$C$}\put(5.46,8.7){$D$}\put(3.55,10.15){$E$}\put(3.55,7.15){$F$}\put(9.14,10.235){$H$}\put(9.14,7.3){$G$}\put(3.3,6.3){$25\:cm$}\put(7.75,6.2){$49\:cm$}\put(11.1,7.5){$15\:cm$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

➝ Given:-

• length (l) = 49 cm.

•breadth (b) = 25 cm.

•height (h) = 15 cm.

\therefore Volume of the Card Board Box is,

\sf\longrightarrow V_{\red{card\:board\:box}}=(49\times25\times15)\:cm^3

Hence,

\therefore\textbf {No. of Chock Boxes }=\frac{\cancel{49}\times\cancel{25}\times\cancel{15}}{\cancel7\times\cancel5\times\cancel3}

\sf\longrightarrow\textbf {No. of Chock Boxes }=7\times5\times5

\sf\longrightarrow\boxed{\red{\textbf {No. of Chock Boxes }=175\:pcs }}

∴ Number of Chock Boxes = 175 pcs.

\setlength{\unitlength}{0.8cm}\begin{picture}(10,5)\thicklines\qbezier(1,1)(1,1)(9,1)\end{picture}

Similar questions