Math, asked by harshaglawe100, 1 year ago

AD is a median then prove that AB^2 + AC^2=2(AD^2 +BD^2)

Answers

Answered by Shubhendu8898
0

Draw a perpendicular AL on BC

in ΔALD,


AD² = DL² + AL²


AL² = AD² - DL²


AGAIN IN ΔALB


AB² = AL² + BL²


AB² = AD² - DL² + BL²


AB² = AD² - DL² + (BD + DL)²


AB² = AD² - DL² + BD² + DL² + 2.BD.DL


AB² = AD² + BD² + 2.BD.DL................(I)


IN ΔALC


AC² = AL² + LC²


AC² = AD² - DL² + LC²


AC² = AD² - DL² + (DC - DL)²


AC² = AD² - DL² + DC² + DL² - 2.DC.DL


AC² = AD² + DC² - 2.DC.DL


AC² = AD² + BD² - 2.BD.DL .............................(II)


ADDING EQUATION I AND II


AC² + AB² = AD² +BD² - 2.BD.DL + AD² + BD² + 2.BD.DL


AC² + AB ² = 2(AD² + BD²)


proved


Read more on Brainly.in - https://brainly.in/question/5271664#readmore

Answered by vikram991
1
in triangle ABC, AD is median

then , BD = BC

in triangles ABD and ADC

AB2 = AD2 + BD2 .........(1)

AC2 = AD2 + BC2 ............(2)

now add both the equations,

AB2 + AC2 = AD2 + AD2 + BD2+ BC2

AB2 + AC2 = 2AD2 + 2BD2 [ since BD = BC]

AB2 + AC2 = 2[AD2 + BD2]

hence proved...

HOPE THIS WOULD HELP YOU OUT
Similar questions