algebra question.....plz help me with this question
Attachments:
Answers
Answered by
3
as simple as that.
step 1 use componendo and dividendo.
a + b - c b + c - a c + a - b
------------- = ----------- = ------------
a + b b + c c + a
so 3 equations are given.
just use componendo and dividendo in these
componendo dividendo means.
if a c a + b c + d
--- = --- then -------- = --------
b d a - b c - d
so apply this on these 3 equation.
a + b - c - ( a + b ) b + c - a - ( b +c )
------------------------ = ------------------------ =
a + b - c + ( a + b ) b + c - a + ( b + c )
c + a - b - ( c + a )
--------------------------
c + a - b + ( c + a )
so simplify now.
-c -a -b
-------------- = ---------------- = ---------------
2a + 2b - c 2b + 2c - a 2c + 2a -b
hence denominator is equal and numerator are also equal and hence
a = b = c
hence proved :)
I hope it helps
step 1 use componendo and dividendo.
a + b - c b + c - a c + a - b
------------- = ----------- = ------------
a + b b + c c + a
so 3 equations are given.
just use componendo and dividendo in these
componendo dividendo means.
if a c a + b c + d
--- = --- then -------- = --------
b d a - b c - d
so apply this on these 3 equation.
a + b - c - ( a + b ) b + c - a - ( b +c )
------------------------ = ------------------------ =
a + b - c + ( a + b ) b + c - a + ( b + c )
c + a - b - ( c + a )
--------------------------
c + a - b + ( c + a )
so simplify now.
-c -a -b
-------------- = ---------------- = ---------------
2a + 2b - c 2b + 2c - a 2c + 2a -b
hence denominator is equal and numerator are also equal and hence
a = b = c
hence proved :)
I hope it helps
Similar questions