alpha and beta are the zeroes of the quadratic polynomial ax2 +bx+c then evalute the following :alpha-beta
Answers
Answered by
2
ax²+bx+c=0
zeroes are α and β
sum of roots = α+β = -b/a
products of roots = ab = c/a
(α+β)² = α²+β² + 2αβ
α²+β² = b²-2ac/a² ...........(1)
(α-β)² = α²+β² - 2αβ = b² - 4ac / a² from (1)
α-β = √ b² -4ac / a²
hope this helps.
zeroes are α and β
sum of roots = α+β = -b/a
products of roots = ab = c/a
(α+β)² = α²+β² + 2αβ
α²+β² = b²-2ac/a² ...........(1)
(α-β)² = α²+β² - 2αβ = b² - 4ac / a² from (1)
α-β = √ b² -4ac / a²
hope this helps.
simranpunia123mahi:
i was really worried about this question.....thnx for answering my question
Answered by
0
Alpha and beta are the zeroes of the quadratic polynomial ax²+bx+c
alpha+beta = -b/a
(alpha)(beta) = c/a
(alpha+beta)² = alpha²+beta²+2(alpha)(beta)
alpha²+beta² = (-b/a)²-2(c/a)
→ = (-b/a)²-2c/a
→ = (-b²-2ac)/a²
(alpha-beta)² = alpha²+beta²-2(alpha)(beta)
→ = {(-b²-2ac)/a²}-2(c/a)
→ = {-b²-2ac}/a² - 2c/a
→ = (-b²-4ac)/a²
(alpha-beta) = √({-b²-4ac}/a²)
= ±√-b²-4ac/a
Hope it helps.....
alpha+beta = -b/a
(alpha)(beta) = c/a
(alpha+beta)² = alpha²+beta²+2(alpha)(beta)
alpha²+beta² = (-b/a)²-2(c/a)
→ = (-b/a)²-2c/a
→ = (-b²-2ac)/a²
(alpha-beta)² = alpha²+beta²-2(alpha)(beta)
→ = {(-b²-2ac)/a²}-2(c/a)
→ = {-b²-2ac}/a² - 2c/a
→ = (-b²-4ac)/a²
(alpha-beta) = √({-b²-4ac}/a²)
= ±√-b²-4ac/a
Hope it helps.....
Similar questions