Physics, asked by dograbrothers6187, 10 months ago

An electron is accelerated through a PD of 100 V and then enters a region where it is moving perpendiculasr to a magnetic fiedl B=0.2T. Find the radius of the circular path. Repeat this problem for a proton.

Answers

Answered by FIREBIRD
7

Explanation:

We Have :-

Electron is accelerated through a PD of 100 V

Moving perpendicular to a magnetic field B=0.2T

To Find :-

Radius of the circular path

Solution :-

We Have

kinetic \: energy \: of \: electron  = 100e \\  \\  \\ kinetic \: energy  =  \dfrac{1}{2} mv^{2}  \\  \\  \\ 100e =\dfrac{1}{2} mv^{2} \\  \\  \\ v =  \sqrt{ \dfrac{200e}{m} }  \\  \\  \\ this \: provides \: centripetal \\  \\  \\  \dfrac{mv^{2} }{r}  = evb \\  \\  \\ mv = ebr \\  \\  \\ r =  \dfrac{mv}{eb}  \\  \\  \\ putting \: the \: values \: we \: get \\  \\  \\ r  =  \frac{9.1 \times 10^{ - 31}  \times \sqrt{ \dfrac{200e}{m} } }{1.6 \times 10^{ - 19}  \times 0.2}  \\  \\  \\ solving \:  this \: we \: get  \\  \\  \\ r_{e}  = 0.0167cm \\  \\  \\ and \: for \: proton \: putting \: the \: values \: of \: proton \: in \: the \: formula \: we \: get \\  \\  \\ r_{p} = 0.7cm

Similar questions