Math, asked by anmolpreetgill097, 6 months ago

an isosceles tirangles has perimeter 60cm and each ofthe equal sides are 10cm .Find the area triangle

Answers

Answered by Uriyella
5

Correct Question :

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

⠀⠀⠀⠀

Answer :

  • The area of an isosceles triangle = 9√15 cm².

⠀⠀⠀⠀

Given :

  • The perimeter of an isosceles triangle = 30 cm.
  • The equal sides = 12 cm.

⠀⠀⠀⠀

To Find :

  • The area of an isosceles triangle.

⠀⠀⠀⠀

Solution :

First, we need to find the unequal side.

Isosceles triangle :– It is a triangle in which 2 sides area equal and 1 side is unequal.

Given that,

• The perimeter of an isosceles triangle = 30 cm.

 \implies a + b + c = 30 \: cm

• The equal sides = 12 cm.

 \implies12 \: cm + 12 \: cm + c = 30 \: cm \\  \\  \implies24 \: cm + c = 30 \: cm \\  \\  \implies c = 30 \: cm - 24 \: cm \\  \\  \implies c =6 \: cm

Hence, the third side of an isosceles triangle is 40 cm.

Now, we have to find the area of an isosceles triangle.

By heron's formula,

\boxed{ \orange{ \sf{ \sqrt{s(s - a)(s - b)(s - c)} }}}

Where,

s = semi-perimeter

 \boxed{ \orange{ \sf{s =  \frac{a + b + c}{2} }}}

We have,

  • a = 12 cm.
  • b = 12 cm.
  • c = 6 cm.

 \implies s = \dfrac{12 \: cm + 12 \: cm +6 \: cm }{2}  \\  \\    \implies s = \dfrac{24 \: cm + 6 \: cm}{2} \\  \\  \implies s = \cancel  \dfrac{30}{2} \: cm \\  \\   \implies s = \dfrac{15}{1}  \: cm \\  \\   \implies s = 15 \: cm

Hence, the semi-perimeter (s) is 30 cm.

Now we have,

  • a = 12 cm.
  • b = 12 cm.
  • c = 6 cm.
  • s = 15 cm.

Now, substitute all the values in the heron's formula.

 \implies \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \implies  \sqrt{15 \: cm(15 \: cm - 12 \: cm)(15 \: cm - 12 \: cm)(15 \: cm - 6 \: cm)}  \\  \\  \implies  \sqrt{15(3)(3)(9) \:  {cm}^{4} }  \\  \\ \implies  \sqrt{(3 \times 5)(3)(3)(3 \times 3) \:  {cm}^{4} }  \\  \\  \implies \sqrt{3 \times 5 \times 3 \times3 \times 3 \times 3 }  \:  {cm}^{2}  \\  \\  \implies \sqrt{3 \times 3 \times 3 \times 3 \times 3 \times 5}  \:  {cm}^{2}  \\  \\  \implies3 \times 3 \sqrt{3 \times 5}  \:  {cm}^{2}  \\  \\  \implies9 \sqrt{15}  \:  {cm}^{2}

Hence,

The area of an isosceles triangle is 9√15 cm².

Similar questions