Physics, asked by karthik82631, 10 months ago

An object of specific gravity rho is hung from a thin steel wire. The fundamental frequency for transverse standing waves in wire is 300 Hz. The object is immersed in water so that one half of its volume is submerged. The new fundamental in Hz is

Answers

Answered by Anonymous
2

Answer:

Hey!

Case I : In air

Fundamental frequency, f2L1MT

= 2L1MpVg

Where, T→ Tension in air

V→ Volume

p→ Specific gravity

g→ Gravitational acceleration

M→ Linear density

Case II: Immersed in water to half of the volume

New Tension, T

=T−upthrust force

⇒T

′ =T− 2V ρg

Hope it will be helpful ✌️

Answered by pragatiyadav55
0

Answer:

Case 1 (air)

Fundamental frequency:

$$n=\cfrac { 1 }{ 2L } \sqrt { \cfrac { T }{ m } } \\ \quad =\cfrac { 1 }{ 2L } \sqrt { \cfrac { V\rho }{ m } } $$

where

ρ= specific gravity

V= volume

m= linear density

Case II (immersed in water to half of the volume)

New tension:

$${ T }^{ ' }=T-upthrust\quad force\\ \quad =T-\cfrac { V }{ 2 } \rho g\\ \quad =Vg\left( \rho -\cfrac { 1 }{ 2 } \right) \quad \{ as\quad \rho (water)=1\quad g/c.c\} $$

∴ new fundamental frequency

$${ n }^{ ' }=\cfrac { 1 }{ 2L } \sqrt { \cfrac { { T }^{ ' } }{ m } } \\ \quad =\cfrac { 1 }{ 2L } \sqrt { \cfrac { Vg\left( \rho -\cfrac { 1 }{ 2 } \right) }{ m } } \\ \therefore \cfrac { { n }^{ ' } }{ n } =\cfrac { 1 }{ 2L } \sqrt { \cfrac { Vg\left( \rho -\cfrac { 1 }{ 2 } \right) }{ m } } \div \cfrac { 1 }{ 2L } \sqrt { \cfrac { V\rho g }{ m } } \\ or,\cfrac { { n }^{ ' } }{ 300 } =\sqrt { \cfrac { \rho -\cfrac { 1 }{ 2 } }{ \rho } } \\ \therefore { n }^{ ' }=300{ \left( \cfrac { 2\rho -1 }{ 2\rho } \right) }$$

Explanation:

mark as brainlist

Similar questions