Physics, asked by amalendhup, 1 year ago

Ans faaaaassssssttttt


The wavelength associated with a moving electron depends on it's mass(m) it's velocity (v) and Plank's constant (h).Derrive the equation for wavelength using the method of diamensions????

Answers

Answered by krishnendu35262
4


Wavelength dimension=[L] 
mass dimension=[M] 
velocity dimension= [LT^-1] 
plank constant dimension=[ML^2T^-1] 
now  
[L]=k [M]^a [LT^-1] ^b [ML^2T^-1] ^c 
=k [M]^(a+c)[L]^(b+2c)[T]^(-b-c) 
compare LHS to RHS 
a+c=0 
b+2c=1 
-b-c=0 
so  
c=1 
b=-1 
a=-1

hence 

lemda=k .plank constant/(mass. velocity)

please mark me as brainliest

Answered by Anonymous
4

Let wavelength = l

Mass = m

Velocity = v

Plank's constant = h

l \:  \:  \alpha   \:  \: {(m)}^{a}  \:  \:  \:  \:  -  -  - (1) \\ l \:  \:  \alpha  \:  \:  {(v)}^{b}   \:  \:  \:  \:  -  -  - (2)\\ l \:  \:  \alpha  \:  \: ( {h)}^{c}  \:  \:  \:  \:  -  -  - (3)

l \:  \:  \alpha   \:  \: {(m)}^{a}    {(v)}^{b}  ( {h)}^{c}  \\ l  = k{(m)}^{a}    {(v)}^{b}  ( {h)}^{c}  \:  \:  \:  \:  \:  \:  \:  \:  -  -  - (4)

 {m}^{0}   {l}^{1}  {t}^{0}  = k( { {m}^{1} })^{a} ( { {l}^{1} {t}^{ - 1})  }^{b} ( { {m}^{1}  {l}^{2}  {t}^{ - 1} })^{c}  \\ {m}^{0}   {l}^{1}  {t}^{0}  = k( {m}^{a + c} \:   {l}^{b + 2c}  \:  {t}^{ - b - c} )

a + c = 0   \\ a + 1 = 0 \\ a =  - 1\\ \\ b + 2c = 1 \\ b = 1 - 2c \\ b = 1 - 2 \\ b =  - 1 \\  \\  - b - c = 0 \\ b =  - c \\ 1 - 2c =  - c \\ c = 1

From (4)

l = k( {m}^{ - 1} )( {v}^{ - 1} )( {h}^{1} ) \\ \\ l =  \frac{kh}{mv}  \\  \\ k \:  \:  \alpha  \:  \:  \frac{h}{mv}

Please take all the dimensional formulas in capital letters.

⚠️⚠️ⓉⒽⒶⓃⓀⓈ⚠️⚠️

Similar questions