ANSWER FAST ASAP!!!!
BY PROVING BOTH SIDES...
Answers
Given that a,b,c,d are in GP such that.
Let the four terms of the GP be a,ar,ar^2,ar^3.
Here,
a = a, b = ar, c = ar^2, d = ar^3.
LHS:
= > (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)
= > (a^2 + a^2r^2 + a^2r^4)(a^2r^2 + a^2r^4 + a^2r^6)
= > (a^2(1 + r^2 + r^4))(a^2r^2(1 + r^2 + r^4))
= > (a^2)(a^2r^2)(1 + r^2r^4)(1 + r^2r^4)
= > (a^2)(a^2r^2)(1 + r^2r^4)^2
= > (a^4r^2)(1 + r^2r^4)^2
-------------------------------------------------------------------------------------------------------
RHS:
= > (ab + bc + cd)^2
= > (a^2r + a^2r^3 + a^2r^5)^2
= > (a^2r(1 + r^2 + r^4)^2)
= > a^4r^2(1 + r^2 + r^4)^2
LHS = RHS
-------------------------------------------------------------------------------------------------------
Hope this helps!
Let the common ration of terms be r ,
Then,
Now,
Hence,
L.H.S = R.H.S