Math, asked by Anonymous, 1 year ago

ANSWER FAST ASAP!!!!

BY PROVING BOTH SIDES...

Attachments:

Answers

Answered by siddhartharao77
4

Given that a,b,c,d are in GP such that.

Let the four terms of the GP be a,ar,ar^2,ar^3.

Here,

a = a, b = ar, c = ar^2, d = ar^3.

LHS:

= > (a^2 + b^2 + c^2)(b^2 + c^2 + d^2)

= > (a^2 + a^2r^2 + a^2r^4)(a^2r^2 + a^2r^4 + a^2r^6)

= > (a^2(1 + r^2 + r^4))(a^2r^2(1 + r^2 + r^4))

= > (a^2)(a^2r^2)(1 + r^2r^4)(1 + r^2r^4)

= > (a^2)(a^2r^2)(1 + r^2r^4)^2

= > (a^4r^2)(1 + r^2r^4)^2

-------------------------------------------------------------------------------------------------------

RHS:

= > (ab + bc + cd)^2

= > (a^2r + a^2r^3 + a^2r^5)^2

= > (a^2r(1 + r^2 + r^4)^2)

= > a^4r^2(1 + r^2 + r^4)^2

LHS = RHS

-------------------------------------------------------------------------------------------------------

Hope this helps!


siddhartharao77: :-)
siddhartharao77: welcome
Answered by Shubhendu8898
3

Let the common ration of terms be r ,

Then,

 a = a \\ \\ b = ar^{}  \\ \\ c =ar^{2} \\ \\ d = ar^{3} \\ \\ <br />L.H.S \to \\ \\ <br /> =(a^{2} + b^{2} + c^{2})   (b^{2} + c^{2} + d^{2})  \\ \\ =  (a^{2} + a^{2}r^{2} + a^{2}r^{4})(a^{2}r^{2} + a^{2}r^{6})  \\ \\ =   a^{2}(1 + r^{2} + r^{4})a^{2}r{2}(1 + r^{2} + r^{4})  \\ \\ = a^{4}r^{2}(1 + r^{2} + r^{4})^{2}

Now,

 R.H.S. \to  (ab + bc + cd)^{2} \\ \\ = (a^{2}r + a^{2}r{3} + a^{2}r{5})^{2} \\ \\ = a^{4}r^{2}(1 + r^{2} + r^{4})^{2} <br />

Hence,

L.H.S = R.H.S

Similar questions