Math, asked by sweety2952, 1 year ago

answer it with steps simplify
 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5}  }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }

Answers

Answered by Anonymous
2
 \huge {\bold {Solutions:-}}

 \:  \:  \:  \:  \:  \:  \frac{4 + \sqrt{5} }{4 - \sqrt{5} } + \frac{4 - \sqrt{5} }{4 + \sqrt{5} } <br /> \\  =  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +   \sqrt{5}  }{4 +  \sqrt{5} } \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \times  \frac{4 -  \sqrt{5} }{4 -  \sqrt{5} }  \\  =    \frac{ {(4)}^{2} +  { (\sqrt{5}) }^{2}  }{ {(4)}^{2} -  {( \sqrt{5} )}^{2}  }  +  \frac{ {(4)}^{2}  +   {( \sqrt{5}) }^{2}  }{ {(4)}^{2}  -  {( \sqrt{5} )}^{2} }  \\  =  \frac{16 + 5}{16 - 5}  +  \frac{16 + 5}{16 - 5}  \\  =  \frac{21}{11}  +  \frac{21}{11}  \\  =  \frac{42}{11}
Hope it helps you ​



Similar questions