Math, asked by vibhanshu8441, 1 year ago

answer question with photos​

Attachments:

Answers

Answered by Anonymous
10

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\bf{(a + b)(a - b)( {a}^{2} - ab +  {b}^{2})( {a}^{2} + ab +  {b}^{2}) =  {a}^{6} -  {b}^{6}}}

So, [b] is the answer.

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

(a + b)(a - b)( {a}^{2} - ab +  {b}^{2})( {a}^{2} + ab +  {b}^{2})

It can be written as :

 = ((a + b)( {a}^{2} - ab +  {b}^{2}))((a - b)( {a}^{2} + ab +  {b}^{2}))

We know that, (x + y)(x² - xy + y²) = x³ + y³

Here, x = a, y = b

By substituting the values We have,

 =( {a}^{3} +  {b}^{3})((a - b)( {a}^{2} + ab +  {b}^{2}))

We know that, (x - y)(x² + xy + y²) = x³ - y³

Here, x = a, y = b

By substituting the values We have,

 = ( {a}^{3} +  {b}^{3})( {a}^{3} -  {b}^{3})

We know that, (x + y)(x - y) = x² - y²

Here x = a³ , y = b³

By substituting the values We have,

 = {( {a}^{3}) }^{2} -  {( {b}^{3})}^{2}

We know that \tt{{ ({a}^{m} )}^{n} =  {a}^{mn}}

  =  {a}^{3 \times 2} -  {b}^{3 \times 2}

 =  {a}^{6} -  {b}^{6}

\boxed{\bf{(a + b)(a - b)( {a}^{2} - ab +  {b}^{2})( {a}^{2} + ab +  {b}^{2}) =  {a}^{6} -  {b}^{6}}}

So, [b] is the answer.

\mathfrak{\large{\underline{\underline{Identities\:Used:-}}}}

[1] (x + y)(x² - y + y²) = x³ + y³

[2](x - y)(x² + xy + y²) = x³ - y³

[3] (x + y)(x - y) = x² - y²

\mathfrak{\large{\underline{\underline{Extra\: Information:-}}}}

[1] (x + y)² = x² + y² + 2xy

[2] (x + y)(x - y) = x² - y²

[3] (x + a)(x + b) = x² + (a + b)x + ab

[4] (x + y)³ = x³ + y³ + 3xy(x + y)

[5] (x - y)³ x³ - y³ - 3xy(x - y)

[7] (x + y + z)² = x² + y² + z² + 2(xy + yz + xz)

[8] (x + y + z)(x² + y² + z² - xy - yz - yz) = x³ + y³ + z³ - 3xyz


vibhanshu8441: Fantastic brilliant fabulous
Anonymous: tysm
Similar questions