Math, asked by krishnapriyaaa, 10 months ago

Answer sòøœøőøņ please ......

Attachments:

Answers

Answered by Avengers00
17
\underline{\underline{\Huge{\textbf{Question:}}}}

If\: \: p\: cos^{3}\, \theta + 3p\: cos\, \theta\: sin^{2}\: \theta= m\: \: and\: \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: p\: sin^{3}\, \theta + 3p\: cos^{2}\, \theta\: sin\: \theta= n

Prove\: that \left(m+n\right)^{\frac{2}{3}}-\left(m-n\right)^{\frac{2}{3}}= 2p^{\frac{2}{3}}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\Large{\textsf{Step-1:}}}
Find m+n

m+n = p\: cos^{3}\, \theta + 3p\: cos\, \theta\: sin^{2}\: \theta + p\: sin^{3}\, \theta + 3p\: sin^{2}\, \theta\: cos\: \theta

\implies m+n = p\left(cos^{3}\, \theta + 3cos\, \theta\: sin^{2}\: \theta + sin^{3}\, \theta + 3p\: sin^{2}\, \theta\: cos\: \theta\right)————[1]

\\

\underline{\Large{\textsf{Step-2:}}}
Rewrite [1] Using the Identity
\bigstar \: \: \mathbf{a^{3}+3a^{2}b+3ab^{2}+b^{3} = \left(a+b\right)^{3}}

\implies m+n = p\left(sin\, \theta + cos\, \theta\right)^{3}

\\

\underline{\Large{\textsf{Step-3:}}}
Find m-n

m-n = p\: cos^{3}\, \theta + 3p\: cos\, \theta\: sin^{2}\: \theta - \left(p\: sin^{3}\, \theta + 3p\: sin^{2}\, \theta\: cos\: \theta\right)

\implies m-n = p\: cos^{3}\, \theta + 3p\: cos\, \theta\: sin^{2}\: \theta - p\: sin^{3}\, \theta - 3p\: sin^{2}\, \theta\: cos\: \theta

\implies m-n = p\left(cos^{3}\, \theta + 3 cos\, \theta\: sin^{2}\: \theta - sin^{3}\, \theta - 3sin^{2}\, \theta\: cos\: \theta\right)————[2]

\\

\underline{\Large{\textsf{Step-3:}}}
Rewrite [2] Using the Identity
\bigstar \: \: \mathbf{a^{3}-3a^{2}b+3ab^{2}-b^{3} = \left(a-b\right)^{3}}

\implies m-n = p\left(cos\, \theta - sin\, \theta\right)^{3}

\\

\underline{\Large{\textsf{Step-4:}}}
Find \left(m+n\right)^{\frac{2}{3}}

\implies \left(m+n\right)^{\frac{2}{3}} = p^{\frac{2}{3}}\left(\left(sin\, \theta + cos\, \theta\right)^{\cancel{3}}\right)^{\frac{2}{\cancel{3}}}

\implies \left(m+n\right)^{\frac{2}{3}} = p^{\frac{2}{3}}\left(sin\, \theta + cos\, \theta\right)^{2} ————[3]

\\

\underline{\Large{\textsf{Step-5:}}}
Find \left(m-n\right)^{\frac{2}{3}}

\implies \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}}\left(\left(cos\, \theta - sin\, \theta\right)^{\cancel{3}}\right)^{\frac{2}{\cancel{3}}}

\implies \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}}\left(cos\, \theta - sin\, \theta\right)^{2} ————[4]

\\

\underline{\Large{\textsf{Step-6:}}}
Add [3] & [4]

\implies \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} =p^{\frac{2}{3}}\left(sin\, \theta + cos\, \theta\right)^{2} + p^{\frac{2}{3}}\left(cos\, \theta - sin\, \theta\right)^{2}

\implies \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}} \left[\left(sin\, \theta + cos\, \theta\right)^{2} + \left(cos\, \theta - sin\, \theta\right)^{2}\right]

\\

\underline{\Large{\textsf{Step-7:}}}
Using the Identities
\bigstar \: \: \mathbf{\left(a+b\right)^{2} = a^{2}+b^{2}+2ab}
\bigstar \: \: \mathbf{\left(a-b\right)^{2} = a^{2}+b^{2}-2ab}

\implies \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}} \left[\left(sin^{2}\, \theta + cos^{2}\, \theta + 2sin\, \theta\: cos\, \theta\right) + \left(cos^{2}\, \theta + sin^{2}\, \theta - 2sin\, \theta\: cos\, \theta\right)\right]

\\

\underline{\Large{\textsf{Step-8:}}}
Using the Identity
\bigstar\: \: \mathbf{sin^{2}\: \theta+ cos^{2}\: \theta = 1}

\implies \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}} \left[\left(1 + 2sin\, \theta\: cos\, \theta\right) + \left(1 - 2sin\, \theta\: cos\, \theta\right)\right]

\implies \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} = p^{\frac{2}{3}} \left[2+ \cancel{2sin\, \theta\: cos\, \theta} - \cancel{2sin\, \theta\: cos\, \theta}\right]

\therefore\: \: \left(m+n\right)^{\frac{2}{3}}+ \left(m-n\right)^{\frac{2}{3}} = 2p^{\frac{2}{3}}

\\

\mathbf{Hence\: Proved}

muakanshakya: Amazing Explanation! ^_^
Avengers00: thank you (:
Similar questions