if sin A=1/✓5 sin B =1/✓10 find the values of cos A and cos B .using the formula cos(A+B)=cosA.cosB-sinA.sinB, show that A+B=45
Answers
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given ::- sin A = 1/√5
SinB = 1/√10
Solution ::-
Sin²A + Cos²A = 1
Cos²A = 1 - sin²A
= 1 - (1/√5)²
= 1 - 1/5
Cos²A = 4/5
Cos A = 2/√5 .........taking sq. rt. on both sides
Sin²B + cos²B = 1
Cos²B = 1 - sin²B
= 1 - (1/√10)²
= 1 - 1/10
Cos²B = 9/10
CosB = 3/√10 .........taking sq. rt on both sides
Using given equation ::-
Cos(A+B) = cosA.cosB-sinA.sinB
Cos(2/√5 + 3/√10) = 2/√5 x 3/√10 - 1/√5 x 1/√10
LHS ::-
2/√5 x 3/√10 - 1/√5 x 1/√10
= 6/√50 - 1/√50
= 5/√50
= 5/√50 x √50/√50 ........rationalising
= 5√50 / 50
= √50/ 10
= 5√2 / 10 ........∵√50 = 5√2
= √2/2
= √2/2 x √2/√2 .......multiplying by √2/√2
= 2/2√2
= 1/√2
But , cos 45° = 1/√2
From RHS,
Cos(A+ B) = 1/√2
So, cos(A+ B) = cos45°
Therefore,
A + B = 45°
HENCE PROVED
HOPE IT HELPS YOU!!