Math, asked by paru8389, 1 month ago

answer the both questions with explanation
wrongs and fun answers with be reported​

Attachments:

Answers

Answered by AestheticSoul
5

Answer :

Here, the concept of indices will be used. Before solving the question, let's have a look on the law of indices :

Law of indices :

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c}\\ \bf \: Law \: of \: Indices & \bf \: Examples \\ \\ \star \: \sf{1st \: Law \: (Product \: Law)} & \sf{{a}^{2} \times  {a}^{3} =  {a}^{2 + 3} = {a}^{5}  } \\ \\ \star \sf \: {2nd \:  Law  \:  (Quotient \:  law) } & \sf{\dfrac{a^{2} }{a^{3}} = a^{2 - 3}  = a^{ - 1}} \\ \\ \star \: \sf{3rd \:  Law \:  (Power \:  law)} & \sf{(a^2)^3 = (a^{2 \times 3}) = (a^{6})}  \end{array}}\end{gathered}\end{gathered}

Question 1 :

Find the value of (70)⁻⁴ ÷ (70)⁻³

Solution :

Here, the quotient law will be used.

\\ \longrightarrow \sf (70)^{-4} \div (70)^{-3}

Here, the bases are equal, so we can subtract the powers. [2nd Law]

\\ \longrightarrow \sf (70)^{-4 -(- 3)}

\\ \longrightarrow \sf (70)^{-4 + 3)}

\\ \longrightarrow \sf (70)^{-1}

\\ \longrightarrow \sf  \dfrac{1}{70}

\boxed{\bf Answer ~ = ~ \dfrac{1}{70}}

Question 2 :

Find the value of [5⁻¹ × 3⁻¹] ÷ 6⁻¹

Solution :

\\ \longrightarrow \sf [5^{-1} \times 3^{-1}] \div 6^{-1}

Here, the bases are not equal. So, we can't add the powers. So, firstly we will remove the negative power by reciprocating. And then we will do the required calculations.

\\ \longrightarrow \sf  \bigg[ \dfrac{1}{5}  \times \dfrac{1}{3}  \bigg] \div 6^{-1}

\\ \longrightarrow \sf  \bigg[ \dfrac{1}{15}  \bigg] \div 6^{-1}

\\ \longrightarrow \sf  \bigg[ \dfrac{1}{15}  \bigg] \div  \dfrac{1}{6}

\\ \longrightarrow \sf  \dfrac{1}{15}  \times  6

\\ \longrightarrow \sf  \dfrac{6}{15}

\\ \longrightarrow \sf  \dfrac{ \not6}{ \not15}

\\ \longrightarrow \sf  \dfrac{2}{5}

\boxed{\bf Answer ~ = ~ \dfrac{2}{5}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Knowledge Bytes :

Signs are changed on the following bases :

  • (-) × (-) = (+)
  • (-) × (+) = (-)
  • (+) × (+) = (+)
  • (+) × (-) = (-)

Clαrissα: Awesomee! (✷‿✷)
Similar questions