Math, asked by ava71, 11 months ago

answer the question.....​

Attachments:

Answers

Answered by varshavarsha88406
2

I hope this would help you

Attachments:
Answered by StarrySoul
18

\mathfrak{\huge{\underline{Solution:}}}

\textbf{\huge{\underline{Given:}}}

● Height = 20m

● Diameter = 7m

● Length of rectangle(l) = 22m

● Breadth of rectangle(b) = 14m

Find radius from the given diameter

 \star \rm \: Radius =  \dfrac{Diameter}{2}

 \hookrightarrow \sf \:  \dfrac{7}{2}   =  \large \boxed{3.5 \sf \: m}

\textbf{\underline{\underline{Volume\:of\:earth\:dug:}}}

 \star \rm  \:  Volume \:  =  \pi {r}^{2}h

 \hookrightarrow \:  \sf \:  \dfrac{22}{7}  \times 3.5 \times 3.5 \times 20

 \hookrightarrow \:  \sf \large \boxed{770 \sf \:  {m}^{3} }

\textbf{\underline{\underline{Area\:of\:Platform:}}}

 \star \rm\: Area \:  = l \times b

 \hookrightarrow \:  \sf 22 \times 14

 \hookrightarrow \sf \: \large \boxed{ 308 \sf \:  {m}^{2} }

\textbf{\underline{\underline{Height\:of\:Platform:}}}

 \star \rm \: Height =   \frac{ Volume \: of \: earth \: dug }{Area \: of \: platfom}

 \hookrightarrow \sf  \cancel \dfrac{770}{308}

 \hookrightarrow \sf \large \boxed{2.5 \sf \: m}

Similar questions