Math, asked by 143hithen, 1 year ago

answer the question I will mark u as brain list​

Attachments:

Answers

Answered by VemugantiRahul
5
Hi there!
Here's the answer:

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

¶¶¶ POINTS TO REMEMBER :

 When \: u = f(x)\:  and\:v = g(x) then \\\dfrac{d}{dx}\, \dfrac{u}{v}= \dfrac{vu'-uv'}{v^2}

where,
u' = \dfrac{du}{dx} \: and\: v' = \dfrac{dv}{dx}

(a^2-b^2) = (a+b)(a-b)

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

¶¶¶ SOLUTION:

Given,
\implies x\sqrt{1+y}+y\sqrt{1+x}=0

 \implies x\sqrt{1+y}=-y\sqrt{1+x}

 \implies x^2 \cdot (1+y) = (-y)^2 \cdot (1+x)

 \implies x^2 \cdot (1+y) = y^2 \cdot (1+x)

 \implies x^2+x^2y= y^2+y^2x

 \implies x^2-y^2 = y^2x-x^2y

 \implies (x+y)(x-y) = -xy \cdot (x-y)

 \implies x+y = -xy

 \implies x = -xy-y

 \implies x = -y \cdot (x+1)

 \implies y = \dfrac{-x}{x+1}

Differentiate w.r.t x on both sides

Apply u/v rule on RHS

 \implies \dfrac{dy}{dx} = -\dfrac{(x+1) \cdot -1 - (-x) \cdot 1}{(x+1)^2}

\implies \dfrac{dy}{dx} = \dfrac{-1}{(x+1)^2}

This answer is in Option -2
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•

Anonymous: hiiii
Anonymous: pehchana mujhe ????
soumya1943: hlo
Answered by MirzaBilal
1

Step-by-step explanation:

Nice Explanation Vemugantu Rahul

Similar questions