Math, asked by mitesh123, 1 year ago

ANSWER THIS FAST 2 questions

Attachments:

Answers

Answered by Anonymous
9
\textbf{Answer(1)}


\textbf{Equation}

 { \cos}^{4} a -  { \sin}^{4} a + 1 = 2 { \cos }^{2} a

\textbf{Step(1)}


Right first term in factories form

 { \cos}^{4} a -  { \sin}^{4} a = ( { \cos}^{2}a  -  {sin}^{2}a )( { \cos }^{2} a +  { \sin}^{2} a)


\textbf{step2}


Apply phythagorean identity


 { \cos }^{2} a +  { \sin}^{2} a = 1


Eq become


 { \cos}^{2} a -  { \sin }^{2} a(1) + 1 = 2 { \cos}^{2} a

\texbf{Step.3}


 { \cos }^{2} a + ( -  { \sin }^{2} a + 1) = 2 { \cos }^{2} a


\textbf{Step 4}


\textbf{Using , identity}


1 -  { \sin }^{2} a =  { \cos }^{2} a


On putting in above eq we, get

  =  > { \cos }^{2} a +  { \cos }^{2} a = 2 { \cos}^{2} a



\textbf{Step 5}

2 { \cos }^{2}   = 2 { \cos }^{2}

\textbf{Hence}


since,left hand side is equal to right bend side

so hence proved




____________________________________


\textbf{Answer 2}


\texbf{Equation}


 \sin(a)  +  \cos(a) (1 -  \sin(a)  \cos(a)  =  { \sin }^{3}  a+  { \cos}^{3} a


Prove left hand side to equal the right hand side


\textbf{Step.1}



 \sin(a)  +  \cos(a)  -  { \sin}^{2} a \cos{a} -  { \cos}^{2} a  \sin(a)



\\textbf{Step2}


 \sin(a) (1 -  { \cos}^{2} a) +  \cos(a) (1  -  { \sin }^{2} a)


\textbf{Step 3}

 \sin(a)  { \sin }^{2} a  +  \cos(a)  { \cos}^{2} a

\textbf{Step 4}


 =  { \sin}^{3} a  + { \cos }^{3} a

Anonymous: oye moderator
Anonymous: congratulations
Answered by Anonymous
0
/text bf{Answer}

Judtubdrubdeyjv
Similar questions