answer this if can with solution .
Attachments:
Answers
Answered by
3
Solution :
3x/(x - 2)( x + k) = 2/(x-2) + 1/(x + k)
Let's keep the LHS as it is and solve the RHS first .
2/(x-2) + 1/(x + k)
> { 2[ x + k] + [ x - 2 ] }/{ ( x - 2)( x + k) }
> { 3x + 2k - 2}/( x - 2)( x + k)
3x/(x - 2)( x + k) = { 3x + 2k - 2}/( x - 2)( x + k)
For x ≠ 2 and x ≠ -k
The denominator can be cancelled
> 3x = 3x + 2k - 2
> 2k - 2 = 0
> 2k = 2
> k = 1 .
This is the required value of k .
_______________________________________________
Answer : The value of k = 1 satisfies the above equation ]
_______________________________________________
Similar questions