Math, asked by shanaya3422, 1 year ago

answer this question

Attachments:

Answers

Answered by shailaja5407
2

Answer:

  1. AB proportional to OP i.e AB=OP
  2. QR=AC SAME REASON
  3. Angle BAC=PQR
  4. BY SAS congruence we can say triangle ABC~PQR

hope it may help you

Answered by shilpisanjanakumari
3

Step-by-step explanation:

Given: Two triangles ΔABC and ΔPQR in which AD and PM are medians such that AB/PQ = AC/PR = AD/PM

To Prove: ΔABC ~ ΔPQR

Construction: Produce AD to E so that AD = DE. Join CE, Similarly produce PM to N such that PM = MN, also Join RN.

Proof: In ΔABD and ΔCDE, we have

AD = DE  [By Construction]

BD = DC [∴ AP is the median]

and, ∠ADB = ∠CDE [Vertically opp. angles]

∴ ΔABD ≅ ΔCDE [By SAS criterion of congruence]

⇒ AB = CE [CPCT] ...(i)

Also, in ΔPQM and ΔMNR, we have

PM = MN [By Construction]

QM = MR [∴ PM is the median]

and, ∠PMQ = ∠NMR [Vertically opposite angles]

∴ ΔPQM = ΔMNR [By SAS criterion of congruence]

⇒ PQ = RN [CPCT] ...(ii)

Now, AB/PQ = AC/PR = AD/PM

⇒ CE/RN = AC/PR = AD/PM ...[From (i) and(ii)]

⇒ CE/RN = AC/PR = 2AD/2PM

⇒ CE/RN = AC/PR = AE/PN [∴ 2AD = AE and 2PM = PN]

∴ ΔACE ~ ΔPRN [By SSS similarity criterion]

Therefore, ∠2 = ∠4

Similarly, ∠1 = ∠3

∴ ∠1 + ∠2 = ∠3 + ∠4

⇒ ∠A = ∠P ...(iii)

Now, In ΔABC and ΔPQR, we have

AB/PQ = AC/PR (Given)

∠A = ∠P [From (iii)]

∴ ΔABC ~ ΔPQR [By SAS similarity criterion]

HOPE IT HELPS

KEEP QUESTIONING THESE TYPES OF QUESTIONS MORE I LOVE IT.

Similar questions