Math, asked by sureshair1974, 24 days ago

answer this question​

Attachments:

Answers

Answered by negivardhan993
1

Explanation:

\mathsf{Let\: \frac{x}{x+1}\:be\:y.}

\mathsf{5(\frac{x}{x+1})^2-4(\frac{x}{x+1})-1=0}

\mathsf{==>5y^2-4y-1=0}

\mathsf{==>5y^2-5y+y-1=0}

\mathsf{==>5y(y-1)+1(y-1)=0}

\mathsf{==>(y-1)(5y+1)=0}

\mathsf{y=1\:OR\:y=\frac{-1}{5}}

But,

\mathsf{y=\frac{x}{x+1}}, meaning

\mathsf{\frac{x}{x+1}=1 ==>x=x+1} which does not give us a clear solution.

So we will check the other solution.

\mathsf{\frac{x}{x+1}=\frac{-1}{5}}

\mathsf{==>5x=-(x+1)}

\mathsf{==>5x=-x-1}

\mathsf{==>6x=-1}

\mathsf{x=\frac{-1}{6}}

Hence, since this gives us a real solution, x = -1/6,

Answer: x = -1/6

I hope this helps. :D

Answered by dydeepshikha04aug
1

see the attachment

answer is minus one upon six

Attachments:
Similar questions