Math, asked by suryaprateeksh62, 1 month ago

answer this question

Attachments:

Answers

Answered by Anonymous
9

Answer:

Question :

{\sf{\pink{10}. \: Find \:  the \:  value  \: of  \: x :}}

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[x - {\bigg\lgroup \dfrac{x - 2}{7} \bigg\rgroup}\Bigg]} = 36}

(A) 9 ⠀⠀⠀⠀(B) 18

(C) 5 ⠀⠀⠀⠀(D) 4

\begin{gathered}\end{gathered}

Solution :

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[x - {\bigg\lgroup \dfrac{x - 2}{7} \bigg\rgroup}\Bigg]} = 36}

Opening round brackets

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[x - \dfrac{x - 2}{7}\Bigg]} = 36}

we can write x as x/1

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[\dfrac{x}{1}  - \dfrac{x - 2}{7}\Bigg]} = 36}

Now, taking LCM of denominators

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[\dfrac{(x \times 7) - (x \times 1 - 2 \times 1)}{7}\Bigg]} = 36}

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[\dfrac{7x- x -2}{7}\Bigg]} = 36}

Subtracting x from 7x

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[\dfrac{6x -2}{7}\Bigg]} = 36}

Now, opening square brackets

\sf{:\implies\dfrac{9x + 7}{2}  - \dfrac{6x -2}{7}= 36}

Now, again taking LCM of denominators 2 and 7

\sf{:\implies\dfrac{7(9x + 7) - 2(6x -2)}{14}= 36}

Multiple 7 into 9x+7 and 2 into 6x-2

\sf{:\implies\dfrac{63x + 49- 12x - 4}{14}= 36}

Subtracting 12x from 63x and 4 from 49

\sf{:\implies\dfrac{51x + 45}{14}= 36}

Taking LHS (14) to RHS (36)

\sf{:\implies{51x  +  45= 36 \times 14}}

Multiplying 36 into 14

\sf{:\implies{51x + 45= 504}}

Taking LHS (39) to RHS (504)

\sf{:\implies{51x= 504 - 45}}

\sf{:\implies{51x= 459}}

Now, taking LHS (53) to RHS (459)

\sf{:\implies{x= \dfrac{459}{51} }}

Cutting the values

\sf{:\implies{x=  \cancel{\dfrac{459}{51}}}}

\sf{:\implies{x= 9}}

\large\bigstar \:  \red{\underline{\boxed{\sf{x = 9}}}}

Hence, the value of x is 9.

So, the option (A) is the correct answer.

\begin{gathered}\end{gathered}

Verification :

\sf{:\implies\dfrac{9x + 7}{2}  - {\Bigg[x - {\bigg\lgroup \dfrac{x - 2}{7} \bigg\rgroup}\Bigg]} = 36}

Substituting the value of x (9)

\sf{:\implies\dfrac{9 \times 9 + 7}{2}  - {\Bigg[9 - {\bigg\lgroup \dfrac{9 - 2}{7} \bigg\rgroup}\Bigg]} = 36}

\sf{:\implies\dfrac{81 + 7}{2}  - {\Bigg[9 - {\bigg\lgroup \dfrac{9 - 2}{7} \bigg\rgroup}\Bigg]} = 36}

Subtracting 2 from 9

\sf{:\implies\dfrac{81 + 7}{2}  - {\Bigg[9 - {\bigg\lgroup \dfrac{7}{7} \bigg\rgroup}\Bigg]} = 36}

Simplifying 7/7

\sf{:\implies\dfrac{81 + 7}{2}  - {\Bigg[9 - {\bigg\lgroup \cancel{\dfrac{7}{7}} \bigg\rgroup}\Bigg]} = 36}

\sf{:\implies\dfrac{81 + 7}{2}  - {\Bigg[9 - {\bigg\lgroup \:  \:  1 \:  \:  \bigg\rgroup}\Bigg]} = 36}

Opening round brackets

\sf{:\implies\dfrac{88}{2}  - {\Bigg[9 - 1\Bigg]} = 36}

Subtracting 1 fron 9

\sf{:\implies\dfrac{88}{2}  - {\Bigg[ \:  \: 8 \:  \: \Bigg]}  = 36}

Opening square brackets

\sf{:\implies\dfrac{88}{2}  -8  = 36}

Simplifying 88/2

\sf{:\implies \cancel{\dfrac{88}{2}}  -8  = 36}

\sf{:\implies{ 44 -8  = 36}}

\sf{:\implies{ 36  = 36}}

\large\bigstar \:  \red{\underline{\boxed{\sf{LHS = RHS}}}}

Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

☼ BODMAS :

↝ BODMAS rule is an acronym used to remember the order of operations to be followed while solving expressions in mathematics.

It stands for :-

  • ↠ B - Brackets,
  • ↠ O - Order of powers or roots,
  • ↠ D - Division,
  • ↠ M - Multiplication 
  • ↠ A - Addition
  • ↠ S - Subtraction.

↝ It means that expressions having multiple operators need to be simplified from left to right in this order only.

☼ BODMAS RULE :

↝ First, we solve brackets, then powers or roots, then division or multiplication (whatever comes first from the left side of the expression), and then at last subtraction or addition.

  • ↠ Addition (+)
  • ↠ Subtraction (-)
  • ↠ Multiplication (×)
  • ↠ Division (÷)
  • ↠ Brackets ( )

☼ EXPONENT :

↝ The exponent of a number says how many times to use the number in a multiplication.

☼ LAW OF EXPONENT :

The important laws of exponents are given below:

  • ↠ {\rm{{a}^{m} \times {a}^{n} = {a}^{m + n}}}
  • ↠ {\rm{{a}^{m}/{a}^{n} = {a}^{m - n}}}
  • ↠ {\rm{({a}^{m})^{n} = {a}^{mn}}}
  • ↠ {\rm{{a}^{n}/{b}^{n} = ({a/b})^{n} }}
  • ↠ {\rm{{a}^{0} = 1}}
  • ↠ {\rm{{a}^{ - m} = {1/a}^{m}}}
  • ↠ {\rm{{a}^{\frac{1}{n} } = \sqrt[n]{a}}}

 \rule{220pt}{3pt}

Similar questions