Math, asked by himanshiguptayoo, 1 year ago

Answer urgent question no 7 98 points step by step explanation

Attachments:

Answers

Answered by siddhartharao77
5

Answer:

Option(A) - 1024

Step-by-step explanation:

Given:2^{20-log_{2}1024}

=2^{-log_{2}(1024)}*2^{20}

=(2^{log_{2}(1024)})^{-1}*2^{20}

=1024^{-1} * 2^{20}

=(2^{10})^{-1} * 2^{20}

=2^{-10}*2^{20}

=2^{20-10}

=2^{10}

=\boxed{1024}


Hope it helps you!


himanshiguptayoo: thanks bro
siddhartharao77: Welcome!
Answered by Anonymous
3
\underline{\underline{\Huge\mathfrak{Answer ;}}}

<b>Dear ,

Your Answer is ; 1024

✧══════•❁❀❁•══════✧

Given ;-

 = > {2}^{20 - log^{2}1024 }

Now ,

 = > {2}^{ - log^{2}(1024) } \times {2}^{20}

 = > 1024^{ - 1} \times {2}^{20}

 = > (2^{10} )^{ - 1} \times {2}^{20}

 = > {2}^{ - 10} \times {2}^{20}

 = > {2}^{20 - 10} = {2}^{10}

 = > {2}^{10} = 1024

Hence ,
Option (A) 1024 is the right answer.

- Regards
@ItsDmohit ( Brainly Warrior )
Similar questions