Math, asked by Sahil1710, 5 hours ago

Anyone answer in copy don't copy from Internet. ​

Attachments:

Answers

Answered by Anonymous
49

Given to prove that :-

 \rm \:  \dfrac{cos(90 {}^{ \circ} -  \theta) }{1 + sin(90 {}^{ \circ} -  \theta)}  +  \cfrac{1 + sin(90 {}^{ \circ} -  \theta)}{cos(90 {}^{ \circ} -  \theta)}  = 2cosec \theta

PROOF !

Take L.H.S

As we know that,

  • sin(90°-A) = cosA
  • cos(90°-A) = sinA

Substituting the values,

  \rm \: \dfrac{sin \theta}{1 + cos \theta}  +  \dfrac{1 + cos \theta}{sin \theta}

Take L.C.M to the denominator.

 \rm \:  \dfrac{sin {}^{2} \theta + (1 + cos \theta) {}^{2}  }{(1 + cos \theta)(sin \theta)}

 \rm \:  \dfrac{sin {}^{2}  \theta + 1 + cos {}^{2} \theta + 2cos \theta }{sin \theta(1 + cos \theta)}

As we know that ,

sin²A + cos²A = 1

 \rm \:  \dfrac{sin {}^{2}  \theta +cos {}^{2}   \theta+ 2cos \theta + 1 }{sin \theta(1 + cos \theta)}

 \rm \:  \cfrac{1 + 2cos \theta + 1}{sin \theta(1 + cos \theta)}

 \rm \dfrac{2 + 2cos \theta}{sin \theta(1 + cos \theta)}

Take common 2 in denominator

 \rm \:  \dfrac{2(1 + cos \theta)}{sin \theta(1 + cos \theta)}

 \rm \:  \dfrac{2}{sin \theta}

 = \rm \:  2( \frac{1}{sin \theta} )

As we know from Trigonometric relations

1/sinA = cosecA

 = 2cosec \theta

Hence proved !!!!!

Know more :-

  • sin(90°-A) = cosA
  • cos(90°-A) = sinA
  • csc(90°-A) = secA
  • sec(90°-A) = cscA
  • tan(90°-A) = cotA
  • cot(90°-A) = tanA

____________________________

  • sin(90°+A) = cosA
  • cos(90°+A) = -sinA
  • tan(90°+A) = -cotA
  • csc(90°+A) = secA
  • sec(90°+A) = -cscA
  • cot(90°+A) = -tanA

_____________________________

In Q1 all trigonometric ratios are positive

In Q2 sinA, cosecA are positive

In Q3 tanA, cotA are positive

In Q4 cosA , secA are positive

The allied angles of

  • (90°-A) is belongs to Q1
  • (90°+A) is belongs to Q2
  • (180°+A) is belongs to Q3
  • (180°-A) is belongs to Q2
  • (270°+A) is belongs to Q4
  • (270°-A) is belongs to Q3
  • (360° + A) is belongs to Q1
  • (360°-A) is belongs to Q4

When the odd multiples of 90° like 90°,270°, 450° etc changes the trigonometric ratios into as

  • sinA -> cosA
  • cosA-> sinA
  • tanA -> cotA
  • cotA -> tanA
  • cosecA -> secA
  • secA -> cscA

So, from this information can write other like sin(270°+A) , cos(360°+A), sec(180°+A) etc etc

Answered by TYKE
7

Question :

 \dag \:  \sf prove \: that \: \frac{cos(90 \degree - \theta)}{1 + sin(90 \degree -  \theta)}  +  \frac{1 + sin(90 \degree -  \theta)}{cos(90 \degree -  \theta)} = 2cosec \theta  \:  \dag

Solution :

 \sf \frac{cos(90 \degree - \theta)}{1 + sin(90 \degree -  \theta)}  +  \frac{1 + sin(90 \degree -  \theta)}{cos(90 \degree -  \theta)} = 2cosec \theta

We know that,

  • cos(90° - θ) = sin θ

  • sin(90° - θ) = cos θ

By putting these we get,

 \odot \:  \sf \frac{sin \theta}{1 + cos \theta}  +  \frac{1 + cos \theta}{sin \theta} = 2cosec \theta

By doing L.C.M of the denominator we get

 \leadsto \sf  \frac{sin \theta \times sin \theta}{(1 + cos \theta)sin \theta}  +  \frac{(1 + cos \theta)(1 + cos \theta)}{(1 + cos \theta)sin \theta}  = 2 \: cosec \theta

 \leadsto   \sf\frac{ {sin}^{2}  \theta}{sin \theta(1 + cos \theta)}  +  \frac{ {(1 + cos \theta})^{2} }{sin \theta(1 + cos \theta)}  = 2 \: cosec \theta

 \leadsto  \sf\frac{ {sin}^{2}  \theta +  {(1)}^{2} + 2cos \theta +  {(cos \theta)}^{2}  }{sin \theta(1 +cos  \theta)}  = 2 \: cosec \theta

 \leadsto  \sf\frac{ {sin}^{2} \theta  +  {cos}^{2}  \theta + 1 + 2cos \theta}{sin \theta(1 +cos  \theta)} = 2 \: cosec \theta

Now as we know that sin²θ + cos²θ = 1

 \leadsto \sf \frac{1 + 1 + 2cos \theta}{sin \theta(1 +cos  \theta)}  = 2 \: cosec \theta

 \leadsto \sf \frac{2 + 2cos \theta}{sin \theta(1 +cos  \theta)}  = 2 \: cosec \theta

By taking 2 as common in the numerator we get

 \leadsto \sf  \frac{2(1 + cos \theta)}{sin \theta(1 +cos  \theta)}  = 2 \: cosec \theta

1 + cos θ will get cancelled

 \leadsto \sf \frac{2 \cancel{(1 + cos \theta)}}{sin \theta \cancel{(1 + cos \theta)} } = 2 \: cosec \theta

 \leadsto \sf \frac{2}{sin \theta}  = 2 \: cosec \theta

We know that,

sin θ × cosec θ = 1

sin θ = 1/cosec θ

 \leadsto \sf \frac{2}{ \frac{1}{cosec \theta} }  = 2 \: cosec \theta

 \leadsto \sf2 \: cosec \theta = 2 \: cosec \theta

↬ L.H.S = R.H.S

Hence, Proved

Similar questions