Math, asked by EusufKhan, 1 year ago

Anyone plzz answer this qstn:-If ABCD is a cyclic quadrilateral, then show that: cosA + cosB + cosC + cosD = 0​


Anonymous: Cos ( 180 - A ) = - Cos ( A )

Answers

Answered by Anonymous
2
heya \\ \\ \\ \\ in \: acyclic \: quadrilateral \: \: \: \: \: a \: + c = 180 \\ \\ and \\ \\ \\ b + d = 180 \\ \\ \\ \\ \\ = > \\ \\ \\ cos(a) + \cos(180 - a) + \cos(d) + \cos(180 - d) \\ \\ \\ \cos(a) - cos(a) + \cos(d) - \cos(d) \\ \\ \\ = 0

EusufKhan: here, the value of cosB will be cos (180°- D) not cos(180° - A) but anyways thnq bhaiya.
Anonymous: Sorry, for mistake.
Anonymous: have a another look towards my answer.
EusufKhan: no problem bro.....thnq 4 ur help
Anonymous: ur vlcm.
Answered by Anonymous
25

\huge{\mathfrak{Question:-}

If ABCD is a cyclic quadrilateral, then show that: cosA + cosB + cosC + cosD = 0​

\huge{\mathfrak{Solution:-}

In a quadrilateral, sum of opposite angles is 180°.

\bold{A+C = 180^{\circ}}\\ \\ \bold{B+D = 180^{\circ}}

L.H.S = cosA + cosB + cosC + cosD

\bold{= (cos A + cos C)+(cosB + cosD)}\\ \\ \\ \bold{=2cos(\frac{A+C}{2}).\;cos(\frac{A-C}{2})+2cos(\frac{B+D}{2}).\;cos(\frac{B-D}{2})}\\ \\ \\ \bold{=2cos(\frac{180^{\circ}}{2}).\;cos(\frac{A-C}{2})+2cos(\frac{180^{\circ}}{2}).\;cos(\frac{B-D}{2})}\\ \\ \\ \bold{=2cos\;90^{\circ}.cos(\frac{A-C}{2})+2cos\;90^{\circ}.\;cos(\frac{B-D}{2})}\\ \\ \\ \bold{= 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;[\therefore cos\;90^{\circ}= 0]} \\ \\ \\ \bold{=R.H.S}\\ \\ \\ \bold{(HENCE\;PROVED)}

Attachments:

EusufKhan: thnx a lot princess girl for helping me, i really appreciate u
Similar questions