Math, asked by Apurva50, 1 year ago

area bounded by parabola y=4x^2,x=0 and y=1,y=4 is

Answers

Answered by shadowsabers03
59

We need to find area bounded by the parabola,

\longrightarrow y=4x^2

or,

\longrightarrow x=\pm\dfrac{\sqrt y}{2}

Since the area is bounded by x=0 too, we need to check,

\longrightarrow\dfrac{\sqrt y}{2}>0

\Longrightarrow y>0

and,

\longrightarrow-\dfrac{\sqrt y}{2}>0

which is impossible. [Recall \sqrt y is positive square root of y.]

Hence the area bounded will be given by,

\displaystyle\longrightarrow A=\int\limits_1^4\dfrac{\sqrt y}{2}\ dy

\displaystyle\longrightarrow A=\dfrac{1}{2}\cdot\dfrac{2}{3}\left[y^{\frac{3}{2}}\right]_1^4

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{7}{3}}}

Answered by mathdude500
5

Given Question :-

  • The area bounded by parabola y = 4x^2, x = 0 and y = 1, y = 4 is

____________________________________________

\huge \orange{AηsωeR}✍

Given :-

\sf \:  Parabola \: y =  {4x}^{2} , x = 0, y = 1, y = 4

To Find :-

  • Area bounded between these curves.

Solution :-

⟼ y = 4x² represents a upper parabola symmetric along y - axis and having vertex at (0, 0).

⟼ y = 1 is a line parallel to x - axis intersecting the parabola y = 4x² at the points

\sf \:  ⟼(\dfrac{1}{2}  ,1 ) \: and \: ( - \dfrac{1}{2}  , 1)

⟼ y = 4 is a line parallel to x - axis intersecting the parabola y = 4x² at the points

\sf \:  ⟼(1 , 4) \: and \: ( - 1 ,4 )

⟼ Consider a horizontal strip of length = x and width dy in the first quadrant.

⟼ Area of this rectangular strip = x dy.

⟼ This rectangular strips moves from y = 1 to y = 4.

\bf \:As \: y = 4x²

\bf \:  ⟼  {x}^{2}  = \dfrac{y}{4}

\bf \:  ⟼ x = \dfrac{ \sqrt{y} }{2}

 \bf \:Therefore,  \: area  \: of  \: shaded \:  region \:  is

\bf \:Area = \sf\int\limits_{1}^{4}xdy

\bf\implies \:Area = \sf\int\limits_{1}^{4}\dfrac{ \sqrt{y} }{2} dy

\bf\implies \:Area = \dfrac{1}{2} \sf\int\limits_{1}^{4} {y}^{\frac{1}{2} } dy

\bf\implies \:Area =\dfrac{1}{2}[\dfrac{ {y}^{ \frac{1}{2}  + 1} }{ \frac{1}{2}  + 1}  ] \ _{1}^{4}

\bf\implies \:Area =\dfrac{1}{2}[\dfrac{ {y}^{ \frac{3}{2}} }{ \frac{3}{2}}  ] \ _{1}^{4}

\bf\implies \:Area = \dfrac{1}{3} [ {(4)}^{ \frac{3}{2} }   -  {(1)}^{ \frac{3}{2} } ]

\bf\implies \:Area = \dfrac{1}{3} [ {(2)}^{2 \times  \frac{3}{2} }  - 1 ]

\bf\implies \:Area = \dfrac{1}{3} [ {2}^{3}  - 1 ]

\bf\implies \:Area = \dfrac{1}{3} [8 - 1 ]

\bf\implies \:Area = \dfrac{7}{3}  \: square \: units

___________________________________________

Attachments:
Similar questions
Math, 1 year ago