Physics, asked by uditman77, 9 months ago

Area of parallelogram formed by adjacent sides as the vectors A=3i + 2j and B=2j - 4k is

Answers

Answered by myanime052
0

Explanation:

it is always perpendicular to its plane. so, area of parallelogram formed by two adjacent sides a and b = cross product of a and b. hence area of parallelogram is 27 sq unit

Answered by Rohit18Bhadauria
1

Given:

Adjacent sides of parallelogram :-

\bf{\vec{A}=4\hat{i}+2\hat{j}}

\bf{\vec{B}=2\hat{j}-4\hat{k}}

To Find:

Area of given parallelogram

Solution:

We know that,

  • For a parallelogram having adjacent sides \vec{a} and \vec{b}

\bf\purple{Area\:of\:Parallelogram=\mid \vec{a}\times\vec{b}\mid}

Now,

For given parallelogram

\rm{Area=\mid \vec{A}\times\vec{B}\mid}

So,

\rm{\vec{A}\times\vec{B}=\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\3&2&0\\0&2&-4\end{array}\right|}

\rm{\vec{A}\times\vec{B}=(-8-0)\hat{i}-(-12-0)\hat{j}+(6-0)\hat{k}}

\rm{\vec{A}\times\vec{B}=-8\hat{i}+12\hat{j}+6\hat{k}}

Now,

\rm{\mid\vec{A}\times\vec{B}\mid=\sqrt{(-8)^{2}+12^{2}+6^{2}}}

\rm{\mid\vec{A}\times\vec{B}\mid=\sqrt{64+144+36}}

\rm{\mid\vec{A}\times\vec{B}\mid=\sqrt{244}}

\rm{\mid\vec{A}\times\vec{B}\mid=\sqrt{4\times61}}

\rm{\mid\vec{A}\times\vec{B}\mid=2\sqrt{61}}

Therefore,

\longrightarrow\rm\pink{Area\:of\:Parallelogram=2\sqrt{61}}

Hence, the area of given parallelogram is 2√61

Similar questions