Physics, asked by Anonymous, 9 months ago

As shown in figure , a Bob of mass m is tied by massless string whose other end proportion is wound on a fly wheel (disc) of radius R and mass m when released from rest , the bob starts falling vertically . When it has covered distance h .The angular speed of wheel be : ​

JEE Mains 2020

Attachments:

Answers

Answered by shongshilt991
6

✌✌✌Hope it helps you

thanks

Attachments:
Answered by ShivamKashyap08
20

Answer:

  • \large{\bold{\underline{\omega = \dfrac{1}{R}\sqrt{\dfrac{4gh}{3}}}}} rad/sec

Given:

  1. Radius = R.
  2. Mass of Bob = M.
  3. Distance covered by bob = h.

Explanation:

\rule{300}{1.5}

According to Law of Conservation of energy,

Work Done by the all the Force = Change in Rotational Kinetic energy.

\large{\boxed{\bold{W_{(gravity)} = \Delta K.E_{(Rotational)}}}}

\bold{Here}\begin{cases}W_{\sf(gravity)} \text{represents Work Done by Gravity} \\ \\ \\  K.E_{\sf(Rotational)} \text{represents Rotational Kinetic energy}\end{cases}

Substituting the values,

\large{\tt \hookrightarrow mgh = \dfrac{1}{2} m v^2 + \dfrac{1}{2}I\omega^2}

As we Know v = rω.

Substituting,

\large{\tt \hookrightarrow mgh = \dfrac{1}{2} m (R \omega)^2 + \dfrac{1}{2}I\omega^2}

\large{\tt \hookrightarrow mgh = \dfrac{1}{2} m R^2 \omega^2 + \dfrac{1}{2}I\omega^2}

Now,

I = MK²

  • Where K is radius of Gyration.

\large{\tt \hookrightarrow mgh = \dfrac{1}{2} m R^2 \omega^2 + \dfrac{1}{2} m K^2\omega^2}

\large{\tt \hookrightarrow mgh = \dfrac{1}{2} m \omega^2 \bigg[R^2 + K^2\bigg]}

\large{\tt \hookrightarrow \cancel{m}gh = \dfrac{1}{2} \cancel{m} \omega^2 \bigg[R^2 + K^2\bigg]}

\large{\tt \hookrightarrow gh = \dfrac{1}{2}  \omega^2 \bigg[R^2 + K^2\bigg]}

Now,

\large{\tt \hookrightarrow gh = \dfrac{1}{2}  \omega^2 R^2 \bigg[1 + \dfrac{K^2}{R^2}\bigg]}

Now, we Know,

Moment of Inertia of Disc = MR²/2.

I = Mr²/2

  • I = MK²

MK² = MR²/2

K² = R²/2

K²/R² = 1/2.

Substituting,

\large{\tt \hookrightarrow gh = \dfrac{1}{2}  \omega^2 R^2 \bigg[1 + \dfrac{1}{2}\bigg]}

\large{\tt \hookrightarrow gh = \dfrac{1}{2}  \omega^2 R^2 \bigg[ \dfrac{2 + 1}{2}\bigg]}

\large{\tt \hookrightarrow gh = \dfrac{1}{2}  \omega^2 R^2 \bigg[ \dfrac{3}{2}\bigg]}

\large{\tt \hookrightarrow gh = \dfrac{3}{4} R^2 \omega^2}

\large{\tt \hookrightarrow \dfrac{4gh}{3R^2} =  \omega^2}

\large{\tt \hookrightarrow \omega^2 = \dfrac{4gh}{3R^2}}

\large{\tt \hookrightarrow \omega = \sqrt{\dfrac{4gh}{3R^2}}}

\large{\boxed{\boxed{\tt \omega = \dfrac{1}{r}\sqrt{\dfrac{4gh}{3}}}}}

Hence Derived!

\rule{300}{1.5}


Steph0303: Great Answer :)
ShivamKashyap08: Thank You :)
Similar questions