Average velocity of a particle in projectile between its starting point and the highest point of its trajectory is(projection speed=u,Angle of projection from horizontal=theta,)
Answers
Answered by
5
Average magnitude of the velocity is required ?
Vx = u CosФ , Vy = u SinФ - g t
V = √[(u CosФ)² + (u Sin Ф - g t)² ]
= u CosФ √[ 1 + (tan Ф - g secФ/u * t)² ]
Let z = TanФ - (g SecФ /u) t ; dt = - (u CosФ/g) dz
V = u CosФ √[ 1 + z² ]
To find average of V over time t = 0 sec, to T = u SinФ /g ie., till the highest point.
When t =0, z = TanФ. When t = T, z = 0
V_avg = 1/T * Integral from t=0 to T, { V } dt
= 1/T * u² Cos² Ф /g * Integral from z = 0 to TanФ, { √(1+z²) } dz
= (u Cos Ф Cot Ф) * Int from z = 0 to TanФ , { √(1+z²) } dz
Let z = Tan w. dz = Sec² w dw,
When z = 0, w = 0. And, when z = TanФ, w = Ф.
V_avg = (u Cos Ф * Cot Ф) * Integral w = 0 to Ф, { Sec³ w } dw
= (u CosФ *CotФ) * 1/2 [ Sec w tan w + Ln (SecФ+tanФ) ]_0 to Ф
= (u CosФ *CotФ)/2 * [ Sec Ф TanФ + Ln (secФ+ tanФ) ]
For example if Ф = 45°,
V_avg = u / (2√2) * [√2 + Ln (√2 +1) ]
Vx = u CosФ , Vy = u SinФ - g t
V = √[(u CosФ)² + (u Sin Ф - g t)² ]
= u CosФ √[ 1 + (tan Ф - g secФ/u * t)² ]
Let z = TanФ - (g SecФ /u) t ; dt = - (u CosФ/g) dz
V = u CosФ √[ 1 + z² ]
To find average of V over time t = 0 sec, to T = u SinФ /g ie., till the highest point.
When t =0, z = TanФ. When t = T, z = 0
V_avg = 1/T * Integral from t=0 to T, { V } dt
= 1/T * u² Cos² Ф /g * Integral from z = 0 to TanФ, { √(1+z²) } dz
= (u Cos Ф Cot Ф) * Int from z = 0 to TanФ , { √(1+z²) } dz
Let z = Tan w. dz = Sec² w dw,
When z = 0, w = 0. And, when z = TanФ, w = Ф.
V_avg = (u Cos Ф * Cot Ф) * Integral w = 0 to Ф, { Sec³ w } dw
= (u CosФ *CotФ) * 1/2 [ Sec w tan w + Ln (SecФ+tanФ) ]_0 to Ф
= (u CosФ *CotФ)/2 * [ Sec Ф TanФ + Ln (secФ+ tanФ) ]
For example if Ф = 45°,
V_avg = u / (2√2) * [√2 + Ln (√2 +1) ]
kvnmurty:
:-)
Similar questions
English,
9 months ago
Math,
9 months ago
Science,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago