Math, asked by abhinav95, 1 year ago

ax+by=a+b/2 , 3x+ 5y= 4 solve this equation for x and y

Attachments:

Answers

Answered by Schoolgirl123
21

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
8

Answer:

x = \frac{(3b-5a)}{(6b-10a)}

y =\frac{(3b-5a)}{(6b-10a)}

Step-by-step explanation:

 Given \\ ax+by=\frac{a+b}{2}

\implies 2ax+2by=a+b--(1)

 and\\3x+5y=4 ---(2)

Multiply equation (1) by 3 ,and equation (2) by 2a , we get

6ax+6by=3a+3b ---(3)

6ax+10ay = 8a -----(4)

Subtract equation (4) from equation (3), we get

(6b-10a)y = 3a+3b-8a

=> (6b-10a)y = 3b-5a

\implies y = \frac{3b-5a}{6b-10a}--(5)

Now, \\Substitute \:value \: of \: y\\ \: in \: equation \: (2), \: we \: get

3x+\frac{5(3b-5a)}{6b-10a}=4

\implies 3x = 4 -\frac{5(3b-5a)}{6b-10a}

\implies 3x = 4 -\frac{15b-25a)}{6b-10a}

\implies 3x =  \frac{24b-40a-15b+25a}{6b-10a}

\implies 3x=\frac{9b-15a}{6b-10a}

\implies x = \frac{3(3b-5a)}{3(6b-10a)}

\implies x = \frac{(3b-5a)}{(6b-10a)}---(6)

Therefore,

x = \frac{(3b-5a)}{(6b-10a)}

y =\frac{(3b-5a)}{(6b-10a)}

•••♪

Similar questions