b^4 - 676b^2 +57600 = 0 ( b=??)
Answers
Answered by
1
Answer:
b=±24 OR b=±10
i.e b=10, b=-10, b=24 OR b=-24
Step-by-step explanation:
b^4 - 676b^2 +57600 = 0
Let b²=x
∴ x² - 676x + 57600 = 0
By splitting the middle term,
x²-576x -100x + 57600 = 0
x(x-576) -100(x-576)=0
(x-576)(x-100)=0
(x-576)=0 OR (x-100)=0
x=576 OR x=100
But x=b²
∴ 576=b² OR 100=b²
∴ b=±24 OR b=±10
Thus, b=10, b=-10, b=24 OR b=-24 are the roots for this question
Similar questions