b sin β=a sin(2α+β)prove that (b+a)cot(α+β)=(b-a) cotα.
Answers
Answered by
2
Answer:
Step-by-step explanation:
bsin β = asin(2α+β)
asin2αcosβ + acos2αsinβ = bsinβ
a/bsin2αcotβ + a/bcos2α = 1
asin2αcotβ + acos2α = b
asin2αcotβ = (b - acos2α)
cotβ = (b - acos2α)/asin2α
tanβ = asin2α/ (b - acos2α)
LHS = (b+a)cot(α+β) = (b+a)/tan (α+β) = (b+a)(1-tanαtanβ )/(tnα +tanβ )
Similar questions