binomial theorem write the value of (a+b)^n+(a-b)^n and hence find the value of ( √3+√2)^6-(√3-√2)^6
Answers
Step-by-step explanation:
Dear student please refer to above picture
Please mark it as brainliest!!
The value of (a+b)ⁿ+( a-b)ⁿ = 2[ⁿC₀ aⁿ + ⁿC₂ aⁿ⁻² b² + .....+ ⁿCₙ bⁿ] and ( √3+√2)⁶-(√3-√2)⁶ = 396√6 by using binomial theorem
Given that,
We have to find by using the binomial theorem write the value of (a+b)ⁿ+(a-b)ⁿ and find the value of ( √3+√2)⁶-(√3-√2)⁶.
We know that,
From binomial theorem We have formula
(a+b)ⁿ = ⁿC₀ aⁿ + ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² + … +ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ ------>equation(1)
And
(a-b)ⁿ = ⁿC₀ aⁿ - ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² - … -ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ -------->equation(2)
Adding equation(1) and equation(2)
(a+b)ⁿ+( a-b)ⁿ = ⁿC₀ aⁿ + ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² + … +ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ + ⁿC₀ aⁿ - ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² - … -ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ
(a+b)ⁿ+( a-b)ⁿ = 2ⁿC₀ aⁿ + 2ⁿC₂ aⁿ⁻² b² + .....+ 2ⁿCₙ bⁿ
(a+b)ⁿ+( a-b)ⁿ = 2[ⁿC₀ aⁿ + ⁿC₂ aⁿ⁻² b² + .....+ ⁿCₙ bⁿ]
So,
By subtracting equation(1) and equation(2)
(a+b)ⁿ-( a-b)ⁿ = ⁿC₀ aⁿ + ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² + … +ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ - [ⁿC₀ aⁿ - ⁿC₁ aⁿ⁻¹ b + ⁿC₂ aⁿ⁻² b² - … -ⁿCₙ₋₁ a bⁿ⁻¹ + ⁿCₙ bⁿ]
(a+b)ⁿ-( a-b)ⁿ = 2ⁿC₁ aⁿ⁻¹ b + … +2ⁿCₙ₋₁ a bⁿ⁻¹
(a+b)ⁿ-( a-b)ⁿ = 2[ⁿC₁ aⁿ⁻¹ b + … +ⁿCₙ₋₁ a bⁿ⁻¹]
Taking a= √3, b = √2 and n = 6
( √3+√2)⁶-(√3-√2)⁶ = 2[⁶C₁ (√3)⁵ (√2) + ⁶C₃ (√3)³ (√2)³ + ⁶C₅ (√3) (√2)⁵]
= 2[(6)(√3)⁵(√2)+(20)(√3)³(√2)³ + (6)(√3)(√2)⁵]
= 2[54(√6) + 120(√6) + 24 (√6)]
= 396√6
Therefore, (a+b)ⁿ+( a-b)ⁿ = 2[ⁿC₀ aⁿ + ⁿC₂ aⁿ⁻² b² + .....+ ⁿCₙ bⁿ] and ( √3+√2)⁶-(√3-√2)⁶ = 396√6 by using binomial theorem.
To know more, visit:
https://brainly.in/question/26729561
https://brainly.in/question/36373466
#SPJ3