Math, asked by sathvik410, 12 days ago

c) Find the value of √(10 + 4 1 16 ) 0.289​

Answers

Answered by Marinette2789
2

Answer:

Square root of  </p><p>0.00121</p><p>0.289</p><p></p><p> </p><p></p><p>\textbf{Solution:}Solution:</p><p></p><p>\textbf{It is clear that,}It is clear that,</p><p></p><p>\bf\sqrt{289}=17 </p><p>289</p><p></p><p> =17</p><p></p><p>\bf\,\sqrt{121}=11 </p><p>121</p><p></p><p> =11</p><p></p><p>\text{Consider,}Consider,</p><p></p><p>\sqrt{\dfrac{0.289}{0.00121}} </p><p>0.00121</p><p>0.289</p><p></p><p> </p><p></p><p> </p><p></p><p>=\dfrac{\sqrt{0.289}}{\sqrt{0.00121}}= </p><p>0.00121</p><p></p><p> </p><p>0.289</p><p></p><p> </p><p></p><p> </p><p></p><p>=\dfrac{\sqrt{\dfrac{289}{1000}}}{\sqrt{\dfrac{121}{100000}}}= </p><p>100000</p><p>121</p><p></p><p> </p><p></p><p> </p><p>1000</p><p>289</p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p></p><p>=\dfrac{\dfrac{\sqrt{289}}{\sqrt{1000}}}{\dfrac{\sqrt{121}}{\sqrt{100000}}}= </p><p>100000</p><p></p><p> </p><p>121</p><p></p><p> </p><p></p><p> </p><p>1000</p><p></p><p> </p><p>289</p><p></p><p> </p><p></p><p> </p><p></p><p> </p><p></p><p>=\dfrac{\sqrt{289}}{\sqrt{1000}}{\times}\dfrac{\sqrt{100000}}{\sqrt{121}}= </p><p>1000</p><p></p><p> </p><p>289</p><p></p><p> </p><p></p><p> × </p><p>121</p><p></p><p> </p><p>100000</p><p></p><p> </p><p></p><p> </p><p></p><p>=\dfrac{\sqrt{289}}{\sqrt{1000}}{\times}\dfrac{\sqrt{1000}\sqrt{100}}{\sqrt{121}}= </p><p>1000</p><p></p><p> </p><p>289

×

121

1000

100

=\sqrt{289}{\times}\dfrac{\sqrt{100}}{\sqrt{121}}=

289

×

121

100

=17{\times}\dfrac{10}{11}=17×

11

10

=\dfrac{170}{11}=

11

170

=15.45=15.45

\therefore\textbf{Square root of $\bf\dfrac{0.289}{0.00121}$ is 15.45}∴Square root of

0.00121

0.289

is 15.45

Answered by preetbatra191
0

Answer:

the way =please take a calculator and solve in it

Step-by-step explanation:

please make me as a brainlist answer

Similar questions