calculate all other trignometric ratios in terms of cos a
Answers
Answered by
1
Let cos a = x, then,
As, sin²x+cos²x=1, so,
sin a=√{1-x²}
tan a={√(1-x²)}/x
cosec a=1/{√(1-x²)}
sec a=1/x
cot a=x/{√(1-x²)}
As, sin²x+cos²x=1, so,
sin a=√{1-x²}
tan a={√(1-x²)}/x
cosec a=1/{√(1-x²)}
sec a=1/x
cot a=x/{√(1-x²)}
Answered by
1
hello users .....
we have to find
all other trigonometry ratios in term of cos a
solution :-
we know that
sin²a + cos²a = 1
now
sin² a = 1 - cos² a
=> sin a= √(1 - cos²a )
now
cosec a = 1/ sin a = 1/ √(1 - cos²a )
and
sec a = 1 / cos a
and
tan a = sin a / cos a = √(1 - cos²a ) / cos a
now
cot a = cos a / sin a = cos a / √(1 - cos²a )
✬✬ hope it helps ✬✬
we have to find
all other trigonometry ratios in term of cos a
solution :-
we know that
sin²a + cos²a = 1
now
sin² a = 1 - cos² a
=> sin a= √(1 - cos²a )
now
cosec a = 1/ sin a = 1/ √(1 - cos²a )
and
sec a = 1 / cos a
and
tan a = sin a / cos a = √(1 - cos²a ) / cos a
now
cot a = cos a / sin a = cos a / √(1 - cos²a )
✬✬ hope it helps ✬✬
Similar questions