Physics, asked by debalinadass9052, 1 year ago

Calculate the electronic polarizability of argon atom. Given that εr=1.0024 at NTP and N=2.7x10²⁵ atoms/m³.

Answers

Answered by ravi34287
13
Solution :

 

Relative permitivity = 1.0024 at NTP 

Permitivity of free space  = 8.854 × 10–12 Fm–1



Attachments:
Answered by anjali13lm
2

Answer:

The argon atoms's electronic polarizability, \alpha _{e}, calculated is  7.86\times 10^{-40}F-m^{2}.

Explanation:

Given,

The argon atoms's relative permeability, \epsilon _{r} = 1.0024

The total number of given atoms per unit volume, N = 2.7\times 10^{25} atoms/m^{3}

The electronic polarizability of an argon atom, \alpha _{e} =?

As we know,

  • Electronic polarizability, \alpha _{e} = \frac{\epsilon _{0} ( \epsilon _{r}-1) }{N}

Here, \epsilon _{0} is permeability constant = 8.85\times 10^{-12}F/m.

After putting the value in the equation, we get:

  • \alpha _{e} = \frac{\epsilon _{0} ( \epsilon _{r}-1) }{N}
  • \alpha _{e} = \frac{8.85\times 10^{-12}  ( 1.0024-1) }{2.7\times 10^{25} }
  • \alpha _{e} = \frac{8.85\times 10^{-12}  ( 0.0024) }{2.7\times 10^{25} }
  • \alpha _{e} = 7.86\times 10^{-40}F-m^{2}

Hence, the electronic polarizability of an argon atom, \alpha _{e} =  7.86\times 10^{-40}F-m^{2}.

Similar questions