Physics, asked by habeebedapilliyil, 2 months ago

Calculate the heat developed when 2A current flows for 3 minutes through an electric heater of resistance 920 ohm​

Answers

Answered by InfiniteSoul
54

\sf Given \begin {cases} & \sf { Current \: = \: 20\: A } \\ & \sf{ Resistance = \: 920 \ohm} \\ &\sf { time = \: 3 min = 180 sec } \end {cases}\\

⠀⠀⠀⠀

\sf To \: find \begin {cases} & \sf { Heat\: = \: ?? } \\ \end {cases}\\

⠀⠀⠀⠀

Using Joule's equation of electrical heating :-

⠀⠀

\star\;{\boxed{\sf{\pink{Heat ( H ) = Current ( I ) ^2  \times Resistance ( R ) \times Time ( T)  }}}}\\

⠀⠀⠀⠀

 :\implies\sf H = 2 \times 2 \times 920 \times 180\\

⠀⠀⠀⠀

 :\implies\sf H = 4 \times 920 \times 180 \\

⠀⠀⠀⠀

 :\implies \sf H = 3680 \times 180 \\

 :\implies \sf H = 662400 Joules \\

⠀⠀⠀⠀

⠀⠀

:\implies{\underline{\boxed{\frak{\purple{ Heat \: = 662400\: joules\: }}}}}\;\bigstar\\

⠀⠀⠀⠀

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Answered by BrainlyRish
59

Given : The amount of Current flows is 2A( Ampere ) , Resistance is the 920 ohm & Total time taken is 3 min .

Exigency To Find : The amount of Heat Developed.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀▪︎⠀⠀The amount of Current [ I ] flows is 2A( Ampere ).

⠀⠀⠀⠀⠀▪︎⠀⠀Resistance [ R ] is 920 \Omega .

⠀⠀⠀⠀⠀▪︎⠀⠀Total Time taken [ T ] is 3 min .

⠀⠀⠀⠀⠀⠀Converting Time taken from minutes to second :

\qquad:\implies \sf Total \:Time \:Taken\:\:(\ T\ ) \:=\: 3\:min \:\\

\qquad:\implies \sf Total \:Time \:Taken\:\:(\ T\ ) \:=\: 3\times 60\:second \:\qquad \bigg\lgroup \sf{ 1\: minute \:=\:60\:seconds\:}\bigg\rgroup \:\:\\

\qquad:\implies \bf Total \:Time \:Taken\:\:(\ T\ ) \:=\: 180\:seconds \:\\

\qquad :\implies \pmb{\underline{\purple{\: Total \:Time \:Taken\:\:(\ T\ ) \:=\: 180\:seconds\: }} }\:\bigstar \\

⠀⠀⠀⠀⠀⠀Now ,

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\bigstar \:\:\bf \:By \:Joule's \:Equation\:of\:Electrical\:Heating\:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{\: H \:=\:(\ I\ )^2 \:\times\: R \:\times T \:\: }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀Here , I is the amount of Current , R is the Resistance & T is the Total time taken .

\qquad:\implies \sf H \:=\:(\ I\ )^2 \:\times\: R \:\times T \:\: \\\\

\qquad:\implies \sf H \:=\:(\ 2 \ )^2 \:\times\: 920 \:\times 180 \:\: \\\\

\qquad:\implies \sf H \:=\:4 \:\times\: 920 \:\times 180 \:\: \\\\

\qquad:\implies \sf H \:=\:4 \:\times\: 165600 \:\: \\\\

\qquad:\implies \sf H \:=\:662400 \:\: \\\\

\qquad :\implies \pmb{\underline{\purple{\: Heat\:\:(\ H \ ) \:=\: 662400\:Joules\: }} }\:\bigstar \\

⠀⠀⠀⠀⠀▪︎⠀⠀ Here , H denotes Heat which is 662400 Joules

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The \:Heat\:Developed \:is\:\bf{662400\;Joules \:}}.}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions