Physics, asked by arisyasabri01, 10 months ago

Calculate the rms speed of hydrogen gas molecule at 27°C. Given that the molar mass for hydrogen molecules is 2 g/mol, and R = 8.31 J mol-1 K-1

Answers

Answered by BrainlyPopularman
35

GIVEN :

Temperature of hydrogen molecule = 27°C = 300 k

• Molar mass for hydrogen molecules is 2 g/mol = 2/1000 kg/mol = 0.002 kg/mol

R = 8.31 J mol-1 K-1

TO FIND :

• rms speed of hydrogen molecules = ?

SOLUTION :

• We know that –

  \\ \:  \:  \longrightarrow  \:  { \boxed{ \sf V_{rms} =  \sqrt{ \dfrac{3RT}{M} } }} \\

• So that –

  \\ \:  \:  \implies  \: \sf V_{rms} =  \sqrt{ \dfrac{3(8.31)(300)}{(0.002)}} \\

  \\ \:  \:  \implies  \: \sf V_{rms} =  \sqrt{ \dfrac{3(831)(3)(1000)}{(2)}} \\

  \\ \:  \:  \implies  \: \sf V_{rms} =  \sqrt{ \dfrac{831 \times 9 \times 1000}{2}} \\

  \\ \:  \:  \implies  \: \sf V_{rms} =  \sqrt{ 3739500} \\

  \\ \:  \:  \implies  \large{ \boxed{ \sf V_{rms} = 1,933.78 \: \dfrac{m}{s}}} \\

Answered by Anonymous
55

We know that:-

\begin{lgathered} { \sf V_{rms} = \sqrt{ \dfrac{3RT}{M} } } \\\end{lgathered}

Solution:-

\begin{lgathered} ⇝ \sf V_{rms} = \sqrt{ \dfrac{3(8.31)(300)}{(0.002)}} \\\end{lgathered}

\begin{lgathered} ⇝ \sf V_{rms} = \sqrt{ \dfrac{3(831)(3)(1000)}{(2)}} \\\end{lgathered}

\begin{lgathered} ⇝ \sf V_{rms} = \sqrt{ \dfrac{831 \times 9 \times 1000}{2}} \\\end{lgathered}

\begin{lgathered} ⇝ \sf V_{rms} = \sqrt{ 3739500} \\\end{lgathered}

\begin{lgathered} ⇝ {\red{ \sf V_{rms} = 1,933.78 \: \dfrac{m}{s}}} \\\end{lgathered}

Similar questions